Source code for xrbm.losses.losses

"""
Cost functions for xRBM Library
Created by Omid Alemi - 2017
"""

import tensorflow as tf
import numpy as np

[docs]def cross_entropy(dataA, dataB): a = dataA * tf.log(tf.sigmoid(dataB)) b = (1 - dataA) * tf.log(1 - tf.sigmoid(dataB)) cross_entropy = tf.reduce_mean(tf.reduce_sum(a+b, reduction_indices=1), reduction_indices=0) return cross_entropy
[docs]def mse(dataA, dataB): loss = tf.reduce_mean(tf.square(dataA - dataB)) return loss