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Abstract

This thesis proposes a new software framework that facilitates the study of agent

interaction models in early development stages from a designer’s perspective. Its pur-

pose is to help reduce the design decision space through simulation experiments that

provide early feedback on comparative performance of alternative solutions. This is

achieved through interactive concurrent simulation of multiple teams in a representa-

tive microworld context. The generic simulator’s architecture accommodates an open

class of different microworlds and permits multiple communication mechanisms. It

also supports interoperability with other software tools, distributed simulation, and

various extensions. The framework was validated in the context of two different re-

search projects on helpful behavior in agent teams: the Mutual Assistance Protocol,

based on rational criteria for help, and the Empathic Help Model, based on a concept

of empathy for artificial agents. The results show that the framework meets its design

objectives and provides the flexibility needed for research experimentation.
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Chapter 1

Introduction

One of the most important characteristics of the multiagent paradigm is the ability of

agents to autonomously and intelligently interact with each other. Interactions enable

agents to coordinate their activities, cooperate, collaborate in teams, and negotiate in

a social environment. According to Wooldridge [2009], many researchers believe that,

in the future, computation should be understood mainly as “a process of interactions”.

With the increasing dominance of networks and distributed systems, the focus of agent

studies has shifted from single agents towards their social abilities and organizational

structures, bringing agent interaction models into the forefront of agent research.

The development of agent interaction models is a challenging area in multiagent

systems (MAS) research. The designer of an agent interaction model typically faces a

large number of decisions with many possible outcomes, whose impact upon the system

properties and performance is often difficult to predict. Simulation experiments have

been a key method in the evaluation of possible designs since the earliest studies of

the agent interaction models (e.g., the Contract Net Protocol introduced by Smith
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[1980]). However, despite the growing research interest in agent interactions, universal

simulation tools for such studies have not yet appeared.

In this thesis I propose a new software framework for building simulators that

facilitate the design of a particular class of agent interaction models. The purpose

of such a simulator is to help the designer of an agent interaction model to study

the properties, and in particular the impact upon overall system performance, of

the model in situations of practical interest. In general, an agent interaction model

denotes a specific pattern of interaction that agents use in order to achieve a certain

objective.

The primary application scope of the current framework version, as described

in this thesis, is the study of interaction models for helpful behavior in teamwork of

artificial agents. This topic is an active segment of the MAS research scene. Teamwork

of artificial agents has become a mainstream research area in MAS [Aldewereld et al.,

2004, Sycara and Sukthankar, 2006, Dunin-Keplicz and Verbrugge, 2011]. Following

the research on human teamwork (e.g., [Lepine et al., 2000]) which suggests that the

capability and willingness of team members to provide direct assistance to each other

are important factors of team success, there has been an increasing interest in the

study of helpful behavior in agent teamwork [Yen et al., 2004, Fan et al., 2005, Kamar

et al., 2009, Polajnar et al., 2011, 2012]. The current framework is a design tool that

is specifically tailored for agent interaction models for helpful behavior and facilitates

their design and development.

The framework supports interactive experimentation that allows the user to in-

teract with the simulation model and dynamically change its properties, as well as

other parameters of the experiment. In order to make the interactive experimentation

efficient, the framework’s design includes mechanisms for early feedback that allow
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the user to immediately access the results of an experiment in progress and observe

how agents’ behavior reacts to the dynamic changes. These mechanisms help the

designer to eliminate the undesirable features of the agent interaction models, as well

as unproductive experimental setups, in the early stages of the experimentation cycle.

An essential feature of the framework that facilitates early feedback is the con-

current simulation of multiple teams which employ different agent interaction models

that the designer wishes to compare. This feature enables the experimenter to ob-

serve the behavior and performance of multiple teams at the same time. The designer

can simulate multiple teams that use different agent interaction models but follow

the same experiment scenario in identical task and environment configurations. The

concurrency enables the designer to perform a comparative analysis during the sim-

ulation and draw conclusions as the experiment progresses. One can also simulate

multiple instances of the same agent interaction model with slight differences in order

to optimize the agent interaction model parameter settings. Another possibility is to

compare a team that employs an agent interaction model to address a specific problem

with teams that use substantially different mechanisms to address the same problem

in identical circumstances.

The proposed framework uses a distributable architecture that allows the simula-

tion to run on a network of computation nodes. One of the factors that increases the

computational complexity of the simulation process is that each experiment requires

a large number of runs in order to provide statistically significant results. The concur-

rent experimentation with multiple teams increases the computational requirements

and the time needed to complete a simulation run. In order to overcome those limi-

tations, the framework can spread the experiments over multiple computation nodes

in order to generate the results faster.
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Simulation of multiagent systems requires modeling of the environment in which

agents are going to be situated in a way that is suitable for studying them. How-

ever, real-world problems have details that obscure the core elements that need to be

studied. The world model must be free of such details in order to efficiently support

simulation-based design-oriented comparisons between alternative agent interaction

models. An approach that has proven to be useful in many areas of artificial intelli-

gence is the construction of a suitable microworld, that only represents the essential

elements of the problem and provides a highly simplified abstract model that serves

as a vehicle for studying it. Examples of successful microworlds include the Blocks

World, used in research on planning in classical AI [Russell and Norvig, 1995], and the

Colored Trails [Gal et al., 2010], used in the study of human-agent decision making.

In this thesis, we have developed a microworld that is inspired by Colored Trails but

is designed to represent the concepts needed in the research of helpful behavior in

agent teamwork.

The current implementation of the framework supports the study of agent in-

teraction protocols (AIPs) for collaboration among the members of the same agent

team. In general, AIPs define the legal sequences, and content types, of the messages

that the agents are allowed to send and receive in prescribed scenarios [Paurobally

and Cunningham, 2002, Dunn-Davies et al., 2005]. AIPs can be standardized and

included in libraries that can be used in different MAS platforms. There have been a

variety of AIPs developed such as the Contract Net Protocol, different auction proto-

cols (English Auction, Dutch Auction), and negotiation protocols [Wooldridge, 2009].

Agent interaction protocols rely on a shared message passing infrastructure which al-

lows them to send messages directly to each other. In this research, a message passing

mechanism is developed and validated in the framework.
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The framework’s design strikes a balance between specialization and extendibility.

On the one hand, in order to keep this research within the limits of a Master’s the-

sis, its current version is restricted to mainly support the study of agent interaction

protocols for helpful behavior in the context of teams consisting purely of artificial

agents. On the other hand, the framework has an open architecture that allows its

functionality and application areas to be extended in a number of different directions.

By connecting the framework to external systems, such as MATLAB, various tasks

can be automated and different functionalities can be added to the overall use of the

framework without the need for modifying its core structure. In addition, the frame-

work’s open architecture supports implementing different communication mechanisms

and MAS models which could be used for other types of MAS research. The current

restrictions do not exclude the possibility that some of the solutions developed in this

thesis may have a wider scope and be applicable, for instance, to selfish agents or to

individual interactions without an immediate group context.

Interoperability is another important aspect of the framework. It can be achieved

in different ways. First, external systems can create and run experiments and access

the simulation results; this eliminates the need for the framework to include different

functionalities that already exist in other systems. An instance of such interoperability

has been demonstrated in our research projects by connecting a simulator built in

our framework to the MATLAB’s Global Optimization Toolbox. Such a connection

allows the interaction model designers to use optimization algorithms in order to

determine the optimal configuration for their model. Second, the framework allows its

MAS model to employ external agent reasoning engines to provide complex reasoning

capabilities for its agents.

The design of the framework remains open to a number of extensions to support
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a wider scope of research on agent interaction models. First, in addition to message

passing, two other communication mechanisms are also included as options in the

general architecture model: indirect communication through environment and com-

munication through shared storage. Second, different MAS models, that represent

different sets of problems in the real world, can be incorporated into the framework.

Those extensions do not require modification of the framework’s architectural struc-

ture.

The insights concerning the absence of suitably flexible simulation tools for AIP

design in the domain of agent teamwork, and the need to develop a new software

framework for that purpose, have developed gradually in the course of our studies

of interaction protocols for helpful behavior in agent teamwork at the University of

Northern British Columbia (UNBC) [Polajnar et al., 2011, Nalbandyan, 2011, Dal-

vandi, 2012, Polajnar et al., 2012]. During my participation in the ongoing MAS

research at UNBC, I have examined and evaluated the development of AIPs for agent

teamwork, and have identified the requirements for developing a design tool to facili-

tate their design and study.

The design of the framework proposed in this thesis has been incrementally refined

in interaction with the AIP research projects that employed its successive versions in

their simulation experiments. One of the projects has been the study of the mutual

assistance protocol (MAP) [Nalbandyan, 2011, Polajnar et al., 2012], which uses a

bilateral approach for deciding whether an agent should perform an action to help a

teammate. Another project has investigated how incorporating empathy into team-

work of artificial agents, as a mechanism for triggering help, can improve the teamwork

performance [Polajnar et al., 2011, Dalvandi, 2012]. Two other agent interaction pro-

tocols that use unilateral help approaches have also been modeled for comparative
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studies of the MAP. The ability of the framework to model different types of AIPs

has thus been validated through application in ongoing AIP research. The interoper-

ability of the framework with the MATLAB Global Optimization Toolbox has been

successfully used to perform the optimization of the empathic help model. A dynamic

teamwork environment has been modeled in a microworld and used for various ex-

periments. Finally, the framework’s distributable architecture has been tested and

validated for its performance.

The rest of the thesis is organized as follows. Chapter 2 covers the necessary

background and related work. Chapter 3 describes the research problem addressed in

this thesis and specifies my motivation and objectives for designing a new framework

for studies of agent interaction protocols. The next three chapters describe different

aspects of the framework. First, I explain the architecture of a generic simulator

that can be built using the framework in Chapter 4. In Chapter 5, I present the

approach to the modeling of AIPs, and describe a common general world model for

agent teamwork as well as two different specializations of the world model that lead to

two separate simulators, each designed for a different class of helpful behavior AIPs.

Finally, Chapter 6 describes the use of those simulators in conducting experiments

with the two groups of AIPs. Chapter 7 presents an evaluation of the framework, and

Chapter 8 the conclusions and future work.
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Chapter 2

Background and Related Work

This chapter presents the necessary background information and an overview of the

previous work in multiagent systems, agent interactions and interaction protocols,

agent teamwork, engineering of agent interactions, and simulation of agent interac-

tions.

2.1 Multiagent Systems

There is no widely accepted definition of an agent or a multiagent system. According

to Wooldridge [2009], a multiagent system consists of multiple agents that interact

with each other. From another perspective, Shoham and Leyton-Brown [2008] define

multiagent systems as “...systems that include multiple autonomous entities with

either diverging information or diverging interests or both”.
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Wooldridge and Jennings [1995] define an agent as a computer system that ex-

hibits autonomous behavior, is situated in an environment, and pursues its objectives.

Wooldridge [2009] also specifies the capabilities that an intelligent agent is expected

to have: reactivity, the ability of the agent to perceive the environment that it is

situated in and respond to perceived changes; proactiveness, the ability of the agent

to perform goal-directed behavior by taking the initiative; and social ability, that lets

the agent meaningfully interact with other agents and/or humans.

Applications of MAS vary from space applications [Sierhuis et al., 2003] and manu-

facturing [Monostori et al., 2006] to electronic commerce [Luck et al., 2003] and social

sciences [Sun, 2006].

2.2 Agent Interactions and Interaction Protocols

Agent interaction is one of the central aspects of multiagent systems and agent-

oriented design. Agents can interact in different ways to achieve complex tasks by

coordinating their activities and behavior [Weiss, 2000]. The nature of such inter-

actions varies from being competitive to being cooperative. Furthermore, agent in-

teractions can be implemented using different communication mechanisms. Three

different communication mechanisms that are discussed in this thesis are: message

passing, shared-storage communication, and implicit communication through the en-

vironment.

Message passing is the most commonly used communication mechanism in MAS.

In message passing, a sender agent sends a message to the receiver directly by know-

ing its address [Uhrmacher and Weyns, 2009]. In order to achieve complex tasks
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using message passing, often a number of messages need to be sent back and forth

between agents in some meaningful sequence. Although each message participates in

the interaction, the final outcome of the interaction is the result of all messages being

exchanged together. To ensure the successful outcome of such interactions, certain

constraints and rules need to be used to manage them efficiently. These constrains

and rules that are imposed to the messages are defined by an agent interaction proto-

col (AIP) [Chen and Sadaoui, 2003, Paurobally and Cunningham, 2002, Dunn-Davies

et al., 2005]. AIPs define the legal sequences, and content types, of the messages that

the agents are allowed to send and receive in prescribed scenarios. There have been

a variety of AIPs developed, such as the well-known Contract Net Protocol [Smith,

1980], different auction protocols (English Auction, Dutch Auction), negotiation pro-

tocols, and protocols for helpful behavior.

In a shared-storage communication, agents interact through a shared memory to

store and retrieve information [Fortino and Russo, 2005] in order to solve a given prob-

lem. An important class of artificial intelligence (AI) systems for distributed problem

solving that rely on shared-storage communication are the blackboard systems.

The blackboard concept is best described by Corkill [1991] as an approach similar

to a group of human experts working on a problem:

Imagine a group of human specialists seated next to a large blackboard.

The specialists are working cooperatively to solve a problem, using the

blackboard as the workplace for developing the solution.

Problem solving begins when the problem and initial data are written

onto the blackboard. The specialists watch the blackboard, looking for an

opportunity to apply their expertise to the developing solution. When a
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specialist finds sufficient information to make a contribution, she records

the contribution on the blackboard, hopefully enabling other specialists to

apply their expertise. This process of adding contributions to the black-

board continues until the problem has been solved.

Blackboard systems generally consist of three main components: knowledge sources

(agents), a shared storage, and a control component. The knowledge sources are

software agents that contain the knowledge and expertise needed to solve a specific

sub-problem. The agents in this model do not necessarily need to be aware of other

agents and their special expertise in the system and are responsible to contribute to

solving the main problem whenever they can solve the sub-problems regarding their

specialty. Therefore, each agent can have its own internal architecture, programming

paradigm, and knowledge representation which suit its own expertise. The blackboard

is the global memory that may contain different data structures such as input data,

partial solutions, and other data needed in different stages of the problem solving as

well as providing a medium for communication and interaction between agents. The

control component is responsible for execution of the system and the problem solving

by notifying each agent whenever they can contribute to solve the problem. The main

structure and the role of the control component differ in each system.

Implicit communication through environment is a form of indirect communication

that is based on concepts taken from biology and ethology where animals perform col-

lective behavior by using signals left in their environment as a means of communication

[Uhrmacher and Weyns, 2009]. Keil and Goldin [2006] define indirect interaction as an

interaction through making changes in a persistent environment so that the recipient

agent can observe the changes. The environment needs to be persistent in the sense

that it has a memory of interactions. As indirect interaction is a form of low-overhead
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interaction which can be used by agents without sophisticated computational power

[Holland, 1996], one of its main application areas is the kind of multiagent systems

in which there could be no explicit task assignment or reasoning capabilities. In this

class of MAS, agents could be simple entities without much computational power

and they simply react to the signals they perceive in their environment in order to

coordinate their activities.

Uhrmacher and Weyns [2009] specify two forms of signals for MAS: marks and

fields. Marks are signs that agents drop on their way on the environment (which

could be in the form of pheromones, tracks, objects, etc) so that other agents, by

perceiving these signs, can interpret their meaning or purpose. Fields are signals that

are spread in the environment and their intensity can reflect the distance between

a source and a location in the environment. They are mostly useful for avoiding

obstacles or finding desirable objects in the environment.

2.3 Agent Teamwork

Teamwork is the collaboration of agents in order to achieve a common task. According

to Cohen and Levesque [1991], teamwork is more than just the collection of simul-

taneous and coordinated tasks being done by a group. What mainly distinguishes

teamwork from other group activities is that team members share a mutual mental

state. For example, agents typically have some common beliefs and joint goals. This

mutual mental state affects, and is affected by, the mental states of team members.

The collective activity is performed by individuals that share this mental state.

The motivation for the research on agent teamwork comes from the fact that in
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most real-world applications, the agents are situated in an uncertain, highly dynamic

environment. Such environments are constantly changing. Therefore, any attempt to

build the team based on a fixed, predefined algorithm for coordination among team

members will result in failures in the system [Tambe, 1997]. The research on teamwork

in multiagent systems can be divided into two groups: teams of pure agents and teams

of human-agent. In my research I will be mainly concerned with the teamwork among

artificial agents.

A team, in order to act coherently and address the problems raised by uncertainties

of the environment, must have the following characteristics: provide flexible commu-

nication among the agents, enable agents to monitor their teammates’ progress, and

allow reorganization and reallocation of resources to all the team members [Tambe,

1997].

In order to increase the teamwork performance, agents can perform helpful behav-

ior by assisting their teammates through performing tasks, providing relevant infor-

mation, or giving away their resources. Helpful behavior is becoming an active area of

research [Yen et al., 2004, Fan et al., 2005, Kamar et al., 2009, Polajnar et al., 2011,

2012].

A certain class of agent teams, called expert teams, are those in which each mem-

ber may have a unique set of skills and knowledge that distinguishes it from other

team members. This set of skills and knowledge defines the member’s expertise which

is not easily transferable to other members. Different research approaches have been

taken on this class of agent teams in MAS [Singh, 1991, Polajnar et al., 2011]. The au-

tonomy and distinct expertise of team members influence the design of the interaction

mechanisms for such systems.
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Teamwork models have shown their effectiveness in real-world applications in

which agents work together to jointly accomplish a particular task [Nair et al., 2003].

Examples include robotic soccer [Kitano et al., 1997, Palamara et al., 2009], simula-

tions of urban search and rescue [Kitano et al., 1999, Kruijff et al., 2012], battlefield

simulations [Tambe, 1997, Li et al., 2010], and personal assistant agents [Tambe et al.,

2002, Yorke-Smith et al., 2012].

An observation from reviewing the work on agent teamwork and helpful behavior

indicates that agent interaction plays a central role in effective teamwork. In order to

successfully implement and incorporate teamwork and helpful behavior models into

real-world multiagent systems, one needs to design and employ sophisticated and

flexible interactions.

2.4 Engineering of Agent Interaction Protocols

2.4.1 Formal Methods

Formal approaches can be used to develop and verify agent interaction protocols.

These approaches are often used to specify protocols and verify and validate their

properties and are usually extensions to the methods used to develop protocols in

distributed systems. In MAS literature, in order to capture, represent, and specify

AIPs, different formal approaches have been introduced. These approaches are mostly

based on Extended Finite State Machines [Lind, 2002], Extended UML [Lind, 2002],

and Petri Nets [Cost et al., 1999]. In the following, a short overview of some of these

works is presented.
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In [Odell et al., 2001], the authors argue that while the current Unified Modeling

Language (UML) framework provides a number of different properties that can be

applied to AIPs, there are some extensions specific to MAS. In particular, they propose

Agent UML, an extension of UML that is adopted for multiagent systems. AUML uses

a layered approach for modeling AIPs in which different AUML notations, including

statecharts, are used to represent different aspects of AIPs.

In [Mazouzi et al., 2002], the authors propose a generic formal approach for proto-

col engineering that translates semi-formal specification using Agent UML into Col-

ored Petri Nets and introduces the Recursive Colored Petri Nets formalism.

Chen and Sadaoui [2003] introduce a generic formal framework to develop and

verify AIPs based on a formal specification language called Lotos which is widely

used in distributed systems. Their approach handles concurrency and synchronization,

provides the correctness of AIPs in terms of safety, liveness, and fairness and uses a

number of different tools to formally analyze and verify AIP specifications.

Mokhati et al. [2007] propose a formal framework that can be used to formally

specify the behavior of MAS interactions and verify and validate them.

Dunn-Davies et al. [2005] introduce the propositional statechart formalism to rep-

resent AIPs. Their approach is based on the statechart formalism, a popular method

included in the UML standard, and supports protocol verification and validation.
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2.4.2 Multiagent Languages and Platforms

The growing interest in research on multiagent systems has resulted in the develop-

ment of different programming languages and tools that could be used to implement

such systems. Using agent-oriented languages rather than conventional programming

languages enables the programmers to model problems from a MAS perspective and

implement them in terms of cognitive and social concepts of MAS such as beliefs,

goals, plans, roles, and norms. Agent-oriented programming languages that are cur-

rently in the multiagent systems literature vary from being completely declarative, to

being completely imperative. There are also several hybrid approaches as well. Our

discussion of agent-oriented languages below is based on a survey by Bordini et al.

[2006].

For most of the agent programming languages, there are platforms that imple-

ment their semantics (e.g., Jason platform implements the AgentSpeak(L) semantics).

There are also agent platforms that are not based on any specific programming lan-

guage. These platforms instead focus on the underlying infrastructures for agents to

coexist with each other and be able to find each other and communicate (e.g., Jade).

Most of the cognitive aspects of the agents are declarative by nature and thus,

there have been more declarative languages proposed. Such languages often follow

a strong formal logic-based approach. Examples are FLUX [Thielscher, 2005], MIN-

ERVA [Leite et al., 2002], KABUL and EVOLP [Alferes et al., 2002], DALI [Costantini

and Tocchio, 2002], and ReSpecT [Omicini and Denti, 2001].

There are a few purely imperative agent-oriented programming languages as it is

often not convenient to implement agent-oriented abstractions using an imperative

programming language. One of the examples of such a programming language is the
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commercial JACK Agent Language (JAL) [Evertsz et al., 2004] which extends the

Java programming language instead of using a logic-based approach.

Many of the well-known agent languages provide both declarative and imperative

features. While one can model agent’s cognitive aspects in a declarative manner,

these languages allow the use of some imperative code implemented in an external

language through some special constructs. Examples of such hybrid languages are

3APL (An Abstract Agent Programming Language “triple-a-p-l”) [Hindriks et al.,

1999], AgentSpeak(L) [Rao, 1996], IMPACT [Subrahmanian, 2000], GO! [Clark and

McCabe, 2004], and AF-APL (Agent Factory Agent Programming Language) [Collier,

2002].

Among different agent platforms and frameworks, it is worth to mention TuCSoN

(Tuple Centre Spread over the Network), a framework for multiagent coordination

[Omicini and Zambonelli, 1999]; JADE (Java Agent DEvelopment framework) [Bel-

lifemine et al., 2005], a Java framework for the development of distributed multiagent

applications; Jadex [Pokahr et al., 2005], a framework for the creation of belief-desire-

intention (BDI) agents; and Jason [Bordini et al., 2008], an interpreter and framework

for implementing agents using AgentSpeak(L).

2.5 Simulation of Agent Interactions

Simulation is an experimental computational method for designing, testing, and study-

ing theories or real systems [Uhrmacher and Weyns, 2009]. It is mostly used in sit-

uations where conducting experiments with a real-world system is either impossible

or expensive. Furthermore, often real systems are not fully controllable and therefore
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it is not easy to design the desired experimental settings [Smith, 1980]. According to

Shannon [1975], simulation can be defined as:

The process of designing a model of a real system and conducting

experiments with this model for the purpose either of understanding the

behavior of the system and/or of evaluating various strategies (within the

limits imposed by a criterion or a set of criteria) for the operation of the

system.

Based on Uhrmacher and Weyns’s [2009] point of view, the relationship of MAS

and simulation is twofold: from one perspective, simulation techniques can be used

to design, study, and run a MAS; from another perspective, MAS can be used as

a modeling paradigm to study and understand real-world complex systems that are

composed of many interacting entities. Different MAS platforms that are developed

to support building multiagent systems such as JADE [Bellifemine et al., 2005] and

Jason [Bordini et al., 2008] belong to the first category. The second category includes

a variety of tools that are developed for modeling various application areas such as

studying the behavior of agents in the stock market, network security, and under-

standing the consumers purchasing behavior. More examples of such tools can be

found in [Nikolai and Madey, 2009]. In this thesis I am concerned about the first

category.

Simulation experiments have been a key method in the evaluation of possible

designs since the earliest studies of the agent interaction models. The Contract Net

Protocol introduced by Smith [1980] is developed and evaluated through a specially de-

signed simulator called CNET that simulated a real-world environment of distributed

sensors and processors. Using that simulator, Smith was able to conduct experiments,
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evaluate his protocol, and introduce the necessary refinements, which may not have

been possible which may not have been possible without the simulator.

In research on agent interactions, and in particular AIPs, researchers often develop

their own simulators because of the lack of a general simulation environment. As such

simulators are built to specifically support certain interaction models, they often lack

the flexibility that is needed in order to allow other researchers to experiment with

other classes of interaction models. Examples of such work can be found in [Findler

and Elder, 1995, Wanyama and Homayoun Far, 2007]. In each case, the authors have

developed their own simulator which is specifically built to support their own work.

These type of simulators often remain specific and are not used by other researchers

or for other classes of interaction models.

In order to conduct simulation experiments with an agent interaction model, it

can be implemented within multiagent platforms (as described in Section 2.4) along

with a MAS which can be used for experiments. These platforms often provide em-

bedded reasoning engines, communication infrastructure and management services,

and support for ontologies. Some of the research projects which require simulation of

agent interaction models have been done using these MAS platforms. For example,

[Pasquier et al., 2011] uses 3APL or [Cheng et al., 2010] uses Jadex.

For the purpose of using simulation experiments in designing agent interaction

models, MAS platforms have some limitations. First, a MAS platform does not pro-

vide the user with mechanisms for experimentation and analysis of the results. Second,

a MAS platform usually does not provide the means by which the experimenter could

isolate the impact of agent interactions from the impact of other aspects of agent

behavior.
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As an example of a wide-scope simulator, Kotenko [2009] introduces a domain-

independent simulator for agent teams’ collaboration and competition. His proposed

simulation framework is based on three main components: models of agent teams;

models of team interactions; and interaction environment model. It supports domain

specific ontologies through a subject domain library.

Simulation of multiagent systems requires modeling the environment which agents

are going to be situated in. Often even a simple real-world problem can result in

a relatively complex simulation model. Such a complex model is full of details that

can limit the study of the effects of different factors on the model’s behavior and

performance. A successful approach that has been proven to be useful in artificial

intelligence is to model the world using the microworld approach. In a microworld

model, only the essential elements of a system that reflect the essence of the system are

included in the model. Thus, the result is a very simplified model which can be used

as a means to study the real system without the need to deal with unnecessary details.

The best known example of a microworld approach is the Blocks World [Russell and

Norvig, 1995] used in research on planning in classical AI. It basically consists of a

set of solid blocks that are on a tabletop, and a robot arm that is able to pick one

of them at a time and place it on top of another block or on the table. Given an

initial state, the goal is to build one or more block stacks according the the specified

planning structure. This simple yet effective model allows researchers to investigate

different planning mechanisms.

In the realm of agent interactions, the Colored Trails (CT) game [Gal et al., 2010]

introduces another well-known microworld that abstracts multiagent task domains in

which players negotiate and exchange resources in order to achieve their individual or

group goals. It is mainly designed to study and investigate different decision-making
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models in open mixed networks. CT has been used in MAS research and specifically

in helpful behavior [Kamar et al., 2009]. However, with respect to its possible use in

the design of the interaction models, CT has two main limitations. First, it does not

support explicit representation of interaction models. Second, CT does not provide

the basic tools for experimentation with the model being simulated.
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Chapter 3

A New Framework for Studies of

Agent Interaction Models

The purpose of this chapter is to explain the reasons that motivated the research ad-

dressed in this thesis, describe the research problem, and present the solution strategy.

In Section 3.1, I explore the challenges in the design and quantitative analysis of agent

interaction models that need to be addressed. In Section 3.2, I present the rationale

for a new software framework that will serve as a design tool for the development of

certain types of interaction models in agent teamwork. In Section 3.3, I formulate and

explain some of the design principles that I will use in the construction of the new

framework in order to ensure its effectiveness in its immediate application domain,

and in order to keep it open for different application domains. Finally, my approach

for presenting the framework in this thesis is briefly explained in Section 3.4.
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3.1 The Challenges in Studying Agent Interactions

Agent interaction is one of the fundamental aspects of multiagent systems and agent-

oriented design. It allows agents to coordinate their activities, cooperate, collaborate,

and negotiate while trying to achieve their individual or collective goals. The study

of agent interaction models has long been an active area of research in MAS; in recent

years its practical significance has been on the rise, as many developing areas of MAS

application require concrete engineering solutions (Section 2.2). The present section

outlines some of the challenges encountered in such research and explains how they

motivate the topic of this thesis.

We use the term interaction model to denote a specific pattern of interaction that

agents use in order to achieve a certain objective; for instance, an auction mechanism

can be used to allocate a resource on a competitive basis. An interaction model is

described in terms of communication acts by which the participating agents exchange

information. Multiagent systems use several types of communication mechanisms.

Some of the common ones are: message passing, where agents send messages that

are explicitly addressed to other agents; shared-storage communication, where agents

post information in a storage area that is accessible to other agents; and implicit

communication through the environment, where agents simply act upon the environ-

ment and modify its state in a way that is perceived by other agents (Section 2.2).

Interaction models based on message passing are called agent interaction protocols

(AIP). They specify the structure and sequencing of the messages involved in the

interaction, as well as the behavior of the agents that exchange them. The techniques

by which agent interaction protocols can be specified and analyzed are derived in part

from the techniques developed for protocols in networking and distributed computing

(Section 2.4).

23



The development of an agent interaction model to the point that it can be effec-

tively applied in practical system engineering is a challenging process. The model

designer typically faces a large number of decisions with many possible outcomes,

whose impact upon the properties and performance of a multiagent system as a whole

is often difficult to predict. Once an agent interaction model has been conceived, and

before it has been fully specified in detail, its designer needs to quantitatively ana-

lyze its impact on the system behavior and performance, determining its properties,

advantages, and disadvantages in a specific context. In such studies, the performance

of the multiagent system depends not only on the choice of the interaction model and

its parameter values, but also on many other factors, such as: the characteristics of

the environment in which agents are situated and perform their tasks; the task struc-

ture and complexity, including subtask assignment and resource allocation strategies;

and the overall system organization. In order to evaluate an interaction model in

context, one needs to study a multiagent system as a whole in a number of different

configurations and situations.

In evaluating the early design of an interaction model, there is a wide variety

of questions that the researcher needs to answer. Does the model design have the

necessary formal properties, such as the absence of deadlock? When should an agent

decide to initiate an interaction? When should an agent engage in an interaction

initiated by another? How well does a MAS that uses the interaction model perform

in different situations and scenarios? Given a specific MAS context, how does the

interaction model compare with alternative models with respect to the desired system

performance? Which parameter settings for the interaction model result in a better

(or optimal) performance of the MAS? The answers to these and other questions are

needed in order to better understand and evaluate the properties of a model in relation

to its use in real-world environments. The feedback from the evaluation studies leads
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to iterative refinements of the original design of the interaction model, enabling the

researcher to draw conclusions regarding its suitability for a specific purpose, and to

adapt it to a specific set of requirements.

While some of the questions outlined above can be addressed through formal spec-

ification of interaction models and their mathematical studies, simulation has proven

to be the most widely applicable and effective method for conducting such evaluations.

Simulation has been a key method in the evaluation of possible designs since the ear-

liest studies of agent interaction models (e.g., the Contract Net Protocol introduced

by Smith [1980]). It is a powerful and flexible tool in studying the properties and

predicting the behavior of a complex system such as a MAS in situations of practical

interest (Section 2.4).

Despite the growing research interest in agent interaction models, to the best of

our knowledge, universal or wide-scope simulation tools that would effectively support

all the necessary aspects of their quantitative studies in MAS context have not yet

appeared (Section 2.5). This situation gives rise to three kinds of research challenges.

First, when embarking on a study of a relatively novel class of interaction models,

one needs specialized simulation tools, based on a suitable set of abstractions arising

from an analysis of the nature of the model, and a suitable set of facilities arising

from an analysis of the experimenter’s practical needs in mastering the design deci-

sion complexity. Typically, different researchers or research teams develop their own

simulators for the particular types of interaction models that they study and the types

of questions that they intend to pursue (Section 2.5). Such tools are then gradually

perfected through ongoing research on interaction models within the selected class.

The research on agent interactions is still in an early stage and various new models

are expected to appear. For the time being, those new models are likely to require
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the development of new specialized simulation tools.

Second, a major challenge in simulation studies of agent interaction models comes

from the complexity of the world in which the agents are situated. Even an apparently

simple real-world situation can result in a fairly complex simulation model. This

slows down the simulation and limits the entire research process. The multitude of

factors represented in the complex model also makes it difficult to infer the impact

of individual factors on different aspects of the model’s behavior and performance.

This difficulty has long been recognized in the studies of artificial intelligence. A

successful method of overcoming it has been the construction of a microworld, an

abstract world model that represents the key aspects of the problem being studied

in a highly simplified and yet relevant manner (Section 2.5). For each problem class,

finding the right abstractions that achieve both simplicity and relevance requires a

deep understanding of the problem and represents a major research challenge.

Third, there is the challenge of widening the application scope of the simulation

tools. While developing support for specialized interaction models, one can try to keep

the adopted solutions general, flexible, and extendible, and thus contribute towards

a better understanding of what a more general simulation environment for a wider

variety of interaction models would need to support and how it could be constructed.

An important aspect of such generality is the openness towards different microworlds.

This type of research may pave the way for the eventual construction of more general

simulation frameworks for the study of agent interaction models.

The purpose of this thesis is to address all three challenges, in the specific scope

outlined in the next two sections.
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3.2 The Rationale for a New Framework

In this thesis, I propose a new software framework for early simulation studies dur-

ing the design stage of agent interaction protocols for helpful behavior in teams of

artificial agents. The framework design addresses the research challenges identified in

the previous section by providing specialized support within its restricted application

domain, by providing a core microworld open to variation, as well as by favoring archi-

tectural solutions that are open to generalization and extension beyond this restricted

domain.

The motivation for the new simulator has developed gradually through my partic-

ipation, as a member of the MAS research group at UNBC, in simulation studies of

interaction protocols for helpful behavior in agent teamwork. The subject matter of

those studies has been a new family of protocols, introduced in [Polajnar et al., 2011,

2012, Nalbandyan, 2011, Dalvandi, 2012], and further expanded in ongoing research.

The simulation experiments have mainly aimed at the testing of key design ideas in

the early stages of protocol development. The emphasis has been on investigating the

impact of protocol design decisions upon the performance of an agent team that em-

ploys the protocol. One common experiment scenario involves comparisons between

several agent teams that address identical tasks in identical environments, and have

identical designs except that they employ different versions of the interaction proto-

col. In another common experiment scenario, one seeks to evaluate the protocol under

study by comparing the performance of a team that employs it and the teams that

employ alternative solutions (of a different nature) for the same purpose under the

same circumstances. As the work progressed, it became apparent that the existing

tools were not well-suited to the research tasks. A new specialized simulation tool

needed to be developed, and the ideas shaping its design gradually became clear.
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The proposed software framework is intended to serve as a design tool for in-

teraction models in agent teamwork and differs from other kinds of simulators that

one might use for agent teamwork. For example, in an operating search and rescue

system in which robots interact with people, one may employ a simulator to train

the human personnel in a realistic virtual environment that mimics the real-world

experiences. That kind of simulator requires comprehensive modeling of the MAS in

a real-world environment. In contrast, the framework introduced in this thesis is built

for an entirely different purpose, namely for facilitating the design of agent interac-

tions, which favors simple and abstract MAS models. In the rest of this section, I

identify some of the key requirements arising from this particular orientation of the

proposed framework.

The process of designing an agent interaction model typically involves series of

incremental refinements. Each step includes a set of simulation experiments that

provide an information basis for a specific design choice over a potentially large de-

cision space. In order to properly guide the design evolution, the experimentation

must be interactive and provide early feedback that allows fast elimination of unde-

sirable model features, adjustments of the relevant model parameters, and avoidance

of unproductive experiment setups. These and other core requirements need to be

addressed at the level of the basic architecture of the software framework, as well as

at the levels of its detailed design and implementation.

In order to have statistically significant results, one needs to repeat the same

experiment a large number of times. On the one hand, while experimenting with

a lower number of runs provides the results faster, such results cannot be used to

draw reliable quantitative conclusions, although they may sometimes help roughly

identify the qualitative trends. On the other hand, simulation may be computationally
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expensive, and a high number of runs may require substantial computational power,

or a long computation time, in order to produce the simulation results with the desired

statistical significance. An experimenter in an early stage of the design process, who

seeks to quickly move away from unproductive options, can greatly benefit from fast

identification of unfavorable qualitative trends, despite their low level of statistical

accuracy, while the assessments of near-satisfactory candidate solutions may require

a high degree of statistical confidence. In order to be used effectively in a design

process, the simulation framework needs to provide the experimenter with interactive

dynamic control over repetitive runs based on the observation of the intermediate

results. The user also needs to be able to dynamically modify different parameters of

the MAS model under study, and to observe their effect on the system behavior and

performance.

The proposed specialized simulation framework should not aspire to incorporate

the functionality that is already well supported by available software packages, such

as mathematical optimization or statistical analysis. Moreover, the complex function-

ality that will be required in the anticipated deployment of the model, such as specific

reasoning engines or knowledge bases, should preferably not be imported and inte-

grated into the framework. In both cases it is generally more appropriate to enable the

framework to interact with external systems that provide the required functionality.

Such interactions may involve scenarios in which the framework employs services of

other systems, as well as scenarios in which it provides simulation services to other

systems.

The proposed software framework should be adaptable and extendible so that

one can easily widen its scope as a simulation tool. At a minimum, one should be

able to modify the world model in order to experiment with different phenomena

29



and environments, and allow extensions that support other types of communication

mechanisms and interaction models.

The framework also needs to provide the means for transition towards further

stages of interaction model development, namely the prototyping of the model in

concrete multiagent platforms and languages. This is required in order to allow the

designer to make sure that the experimental results can be reproduced and applied in

more realistic settings.

Many MAS applications in engineering and other fields involve agent teams with

specialized individual roles that rely on different knowledge bases, similar to multidis-

ciplinary human teams. In an expert team (as discussed in Section 2.3) each member

has a unique set of skills and knowledge that distinguishes it from other team mem-

bers and that may not be easily transferable to other members. In our studies of

helpful behavior among team members, the multiagent system model involves agents

that have their own expertise, which makes the cost of an action dependent on who

performs it.

Teamwork of artificial agents has become a mainstream research area in MAS;

within it, the study of helpful behavior increasingly attracts the interest of researchers

(Section 2.3), but adequate simulation tools for the design of necessary AIPs are not

readily available (Section 2.5). Having identified the resulting challenges and the

requirements for overcoming them, we can now address the design principles for the

proposed new software framework.
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3.3 The Design Principles

The previous section has highlighted a number of characteristics that the new frame-

work needs to have in order to fulfill its purpose. Those characteristics shape my

approach to the design of the framework, from its high-level architectural definition

to its detailed design and implementation. In the present section, I identify and ex-

plain the principles that will guide my design decisions presented in the next two

chapters.

Interactive Experiment Control. The experimenter should be able to directly

manipulate the models during simulation experiments. In support of this type of inter-

activity, the system should be able to display the simulation results as the experiment

progresses, providing the feedback necessary for further decisions. By following this

principle, the framework helps to reduce the decision space by allowing the designer

of an interaction model to detect and eliminate undesirable features of the model.

Concurrent Simulation of an Experiment Scenario in Multiple Agent

Teams. In order to address the challenges in comparative studies of interaction

models, multiple agent teams can be simulated concurrently. As each team employs its

own interaction model, using this approach the experimenter can study and compare

multiple interaction models, or different variations of the same model, at the same

time in identical environments and scenarios, and monitor all the results at once as

the experimentation progresses.

Interactive Visualization During Simulation. The results of the simulation,

as well as the state of the world, can be visualized and provided to the experimenter

as they are being generated and updated. This visualization should be supported by

a graphical user interface (GUI) provided by the framework.
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Interactive Control Over Gradual Refinement of Accuracy. The statistical

accuracy of the simulation results for a series of experiments can be refined gradually

as the simulation process continues. In order to have statistically significant results,

experiments need to be repeated a large number of times, causing the simulation

process to take longer. This design principle seeks to balance the generation speed

and the statistical accuracy of the results as a particular stage of the design process

may require. For instance, the simulation might start with a relatively low number

of runs for each experiment (which can be done in a reasonable time). This produces

the initial results which represent the preview of the trend of the results in a timely

manner but with a low statistical accuracy. Next, the simulator repeats the same

experiments and consequently the accuracy of the results improves with time.

Microworld-based MAS Modeling. In order to provide a simple yet representa-

tive world model, the framework should employ a MAS model that is based on the

microworld approach. This principle reduces the need to incorporate complex domain

knowledge, and lets the agent reasoning focus on the essentials.

Low Coupling Between the Simulation Environment and the MAS Model.

The framework should support modifying and replacing the MAS model through

localized programming without the need to modify the rest of the framework. This

is essential as supporting different MAS models makes the framework suitable for

studying interaction models in a wider range of contexts.

Interoperability with other Systems. The framework should support interactions

with other systems both as a client and as a server. This is required in order to use the

functionalities that are already provided by such external systems but needed by the

experimenter. In turn, the framework should allow external systems to define and run

experiments and access the simulation results. The framework should also support

32



the employment of external reasoning engines or knowledge bases by its agents.

Distributable Architecture and Implementation. The framework should have

a distributable architecture that allows the simulation to be either executed on a single

computer or distributed across multiple nodes in a network. The main objective is to

overcome the computational complexity and produce the simulation results faster. In

particular, this implies that early feedback is delivered much faster to the interactive

user, accelerating the design process.

3.4 The Approach in This Thesis

The framework proposed in this thesis can be used to build customized simulators for

agent interaction models. Such simulators are tailored to simulate a specific group

of agent interaction models in a desired context chosen by their designer. For that
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Figure 3.1: Building customized simulators using the framework

purpose, the framework includes a simulation environment that supports different
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MAS models. By incorporating a specific MAS model to the framework, one builds a

customized simulator (Figure 3.1).

In the next chapters, the framework is presented by elaborating its generic sim-

ulator architecture and the approaches used for building a simulation model. The

MAS model presented in this thesis is specifically designed to support our studies of

helpful behavior in agent teamwork. In order to elaborate the framework in more

concrete terms, as well as to evaluate it, two different simulators that are built using

the framework are introduced and explained.
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Chapter 4

The Generic Simulator

Architecture

This chapter presents the generic simulator’s architecture of the framework. This

architecture can be used to build simulators that are customized for different inter-

action models. The chapter begins by identifying the system requirements in terms

of functional, non-functional, and domain-specific requirements in Section 4.1. The

system structure and its high-level decomposition are explained in Section 4.2. In

Section 4.3, the behavioral view of different components of the generic simulator is

elaborated. Finally, in Section 4.4 the role of this generic architecture in creating

customized simulation tools is explained.
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4.1 The System Requirements

In order to specify the requirements of the proposed system, I have used the ap-

proach suggested in [Sommerville, 2004] and have divided the requirements in three

categories: functional requirements, non-functional requirements, and domain-specific

requirements. In the rest of this section, different elements of each group are explained.

4.1.1 Functional Requirements

The generic functions of the simulator are captured in the use cases represented in

Figure 4.1. It illustrates the functionality of the simulator without including its in-

teroperability features. Each use case is explained in more detail in the following

paragraphs.

1. Set up and Run Experiment: The experimenter can set up an experiment and

run it. This functionality is further decomposed into other use cases as follows:

(a) Load Experiment: The experimenter can load a previously saved experi-

ment setup from a file.

(b) Configure Experiment: The experimenter can configure different aspects of

an experiment.

i. Configure Team: The experimenter can configure the parameters re-

garding the team(s) he/she wishes to study. This includes selecting the

participating interaction model(s) and configuring them. In addition,

other properties of a team can be configured in this use case (e.g. the

team composition).
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Figure 4.1: The use case diagram of the simulator as a stand-alone system

ii. Configure Environment: The experimenter can configure the proper-

ties of the environment in which the team(s) would be situated.

iii. Configure Simulator: The experimenter can configure different param-

eters of the simulator.

(c) Save Experiment: The experimenter can save the current experiment setup

into a file.
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(d) Run Experiment: The experimenter can control the execution of the simu-

lation. experimenter can start and stop an experiment. In addition, he/she

can execute the simulation step-by-step.

2. Display Experiment: The Display Experiment use case includes the following

three use cases:

(a) Display MAS Model(s): Upon experimenter’s request, the system displays

the MAS model(s) being simulated in a graphical representation to the ex-

perimenter. This includes the environment state, agents, and team related

information.

(b) Display Experiment Results: Upon experimenter’s request, the system pro-

vides the experiment results to the experimenter. Results can be either

visualized in graphs or displayed in a numerical format.

(c) Debug Experiment: The experimenter can access and study the logs gen-

erated by the interaction model(s) and the environment he/she studies.

Simulator as a Client of an External System. The simulator can use the

services provided by an external system. For example, the experimenter can request

an external statistical software to process the simulator’s results or use an external

visualization package to draw customized charts based on the simulation results. This

type of interoperability of the simulator is presented by the use case diagram in

Figure 4.2 and explained below:

1. The Simulator

(a) Configure External System Interface: The experimenter can configure the

interface that is required to interact with the external system and use its

services.
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Figure 4.2: Simulator as a client of an external system

(b) Request External System Service: The experimenter can request a service

from the external system.

(c) Receive and Display Results: The experimenter can ask simulator to receive

and display the results generated by the external system.

2. The External System

(a) Configure Simulator Interface: The experimenter can configure the simu-

lator interface to the external system through Configure External System

Interface.

(b) Accept & Process the Request: The experimenter can ask the external sys-

tem to accept and process the request through Request External System

Service.

(c) Send Results: The experimenter can ask the external system to send the

results to the simulator through Receive and Display Results interface.
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Simulator as a Server of an External System. The simulator can act as a

server to an external system. The external system can invoke the simulator to run an

experiment with a specified setup. The use cases for this form of interoperability are

presented in Figure 4.3 and explained below.

1. The External System

(a) Configure Simulator Interface: The experimenter can configure the ex-

ternal system to comply with the required interface to interact with the

simulator.

(b) Request Simulation Experiment: The experimenter can request an experi-

ment from the simulator by providing the required properties of the exper-

iment.

(c) Request & Process Results: The experimenter can request the results of the

experiment from the simulator, and have them processed by the external
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system.

2. The Simulator

(a) Configure External System Interface: The experimenter can configure ex-

ternal system interface to the simulator through Configure Simulator In-

terface.

(b) Set up and Run Experiment: The experimenter can ask the simulator to

run an experiment based on the given experiment setup through Request

Simulation Experiment.

(c) Display Experiment: The experimenter can ask the simulator to display

the results for further processing in the external system through Request

& Process Results.

Simulator in a Bilateral Client-Server Relation with an External System.

The simulator can interact with an external system in a bilateral client-server man-

ner. The experimenter can request a service from the external system through the

simulator. In return, the external system, upon the experimenter’s activation through

the simulator, can specify and request an experiment to be done by the simulator.

Once the simulation results are ready, the external system can further process them.

At the end, the simulator can receive and display the external system’s service re-

sults to the experimenter. For example, the experimenter can ask an external system

to optimize a number of parameters of the model he wishes to study. The external

system can create a number of different experiments, request that they be performed

by the simulator, and use their results in order to find the optimal values of those

parameters using its services. The use cases in Figure 4.4 represent this relationship

and are explained in the following:
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Figure 4.4: Simulator in a bilateral client-server relation with an external system

1. The Simulator

(a) Configure External System Interface: The experimenter can configure the

interface that is required in order to interact with the external system and

use its services.

(b) Request External System Service: The experimenter can request a service

from the external system.

(c) Set up and Run Experiment: The experimenter, through Request External

System Service and Accept & Process the Request, asks the external system

to create an experiment setup and pass it to the simulator to run it through

Request Simulation Experiment.
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(d) Display Experiment: The experimenter can ask the simulator to display its

results through Request External System Service functionality of the sim-

ulator and Accept & Process the Request and Receive Experiment Results

functionalities of the external system.

(e) Receive and Display Results: The simulator can receive the results of the

external system’s service and display it to the experimenter.

2. The External System

(a) Configure Simulator Interface: The experimenter can configure simulator

interface to the external system through Configure External System Inter-

face.

(b) Accept & Process the Request: The experimenter can ask the external sys-

tem to accept and process the request through Request External System

Service. This includes two other use cases:

i. Request Simulation Experiment: Upon the experimenter’s request through

Request External System Service and Accept & Process the Request,

the external system can create an experiment setup and request the

simulator to run it.

ii. Receive Experiment Results: Upon the experimenter’s request through

Request External System Service and Accept & Process the Request, the

external system can receive the experiment results from the simulator.

(c) Send Results: The experimenter can request the external system to send

the results to the simulator through Receive and Display Results.

43



4.1.2 Non-functional Requirements

The non-functional requirements of the simulator define the constraints on the func-

tionalities that the simulator provides [Sommerville, 2004]. It is necessary to satisfy

these requirements in order to make the system usable and reliable. These require-

ments are summarized below.

1. The simulator shall support modifications in the microworld, including its re-

placement with a different microworld, without the need to change the simula-

tor’s architecture.

2. The simulator has to provide message-passing mechanisms for direct communi-

cation between agents. In addition, its architecture shall allow the extensions

for supporting implicit communication through environment and shared storage

communication.

3. The simulator shall support a distributable architecture. In principle, the ar-

chitecture should allow the simulation to be distributed on a cluster. One of

the benefits of a distributable architecture is that one can increase the simula-

tion speed through parallel execution. This increases the overall usability of the

simulator.

4. The simulator’s architecture shall support interoperability with external pro-

grams that provide various mathematical, statistical, optimization, and visual-

ization techniques (e.g. Octave, Matlab, etc.). This is needed in order to provide

the support for the processing and analysis of simulation results. It shall also be

possible for such external systems to invoke the simulator’s functionalities and

run simulation experiments as a part of their processing or analysis tasks.
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5. The simulator shall provide user interfaces that comply with the functional

requirements of the simulator. At a minimum, this includes a graphical user

interface (GUI) that allows interactive experimentation and a command-line

interface that allows batch-mode experimentation.

6. The simulator shall support interoperability with multiagent platforms and

agent reasoning engines. This can be used to allow the users of the simulator to

use actual agent code and reasoning, rather than its simulated representation,

whenever it is required. The purpose of this requirement is to allow a more

realistic behavior of agents as well as to ease the transition towards an AIP

prototype implementation on a full multiagent software platform.

7. The simulator shall use an AIP representation technique that makes the protocol

descriptions intuitively understandable, easy to implement, and amenable to

formal studies.

4.1.3 Domain-specific Requirements

The domain-specific requirements specify what is needed with respect to the appli-

cation domain that the simulator is intended for. These requirements explain the

constraints that reflect the fundamental MAS and agent teamwork concepts and have

to be considered in the design and implementation of the simulator. In our case, as

we are interested in studies of helpful behavior in agent teamwork, the models of mul-

tiagent systems presented here are tailored to ease such studies. As the simulator is

intended to be used as a design tool for agent interaction models, the focus on design-

ing the simulator shall be on agents interactions. In order to decrease the influence of

other agent’s components on the evaluation of agent interaction models, assumptions
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and requirements on agent’s deliberation, reasoning, and any domain knowledge have

to be kept as minimum.

1. The simulator shall support a model of a multiagent system that includes rep-

resentation of agents, environment, and task structure.

2. The MAS model shall present a team of agents. For our purpose, we make no

assumptions about the team organization, subtasks assignment, and resource

allocation.

3. The MAS model shall represent individual agents. Such agents need to have

the ability to perform actions, interact with other agents, and maintain both

local beliefs, formed through perception, and context beliefs, formed through

communication with team members. In addition, for the purpose of studying

helpful behavior, each agent shall have its distinct set of skills with respect to

the set of possible actions in the environment, creating diversity in the team

regarding the members’ specializations.

4. The environment itself shall provide communication facilities to agents as well

as a microworld model that can be used for studies of helpful behavior.

5. In order to use the environment for performance analysis of an interaction model,

the communication facilities shall allow modeling communication costs.

6. The microworld should follow simple rules that do not require any particular

domain knowledge or complex reasoning. This makes it suitable for studies of

agent interactions and the required decision makings without the need to deal

with any specific domain ontologies and agent programming.

7. The microworld shall define a set of possible actions, sets of rules for actions

and perceptions, and a source of dynamism. Agents can perform actions on
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the environment according to the provided rules. Each action may require a

specific skill from agents. In addition, the environment should support actions

that agents perform specifically to help another team member. The environment

shall represent the dynamism that exists in real-world situations in a way that it

affects agents’ plans and actions. Different sources can be defined that generate

such dynamics in the environment.

8. The microworld shall define a scoring metric that can be used for quantitative

evaluations of the system performance.

9. Different elements of the microworld shall be parameterized so that the com-

plexity of the environment or the level of its dynamism can be modified during

experimentation by the system experimenter.

10. For our purposes, a team task structure shall be modeled. This task can be

decomposed into subtasks. Once the task is assigned to the team, each agent

in the team is assigned a particular subtask and has to complete it through

performing atomic actions on the environment. These actions are determined

through agent’s autonomous planning abilities and the characteristics of the

environment. This brings about the need to allow an agent to perform its own

planning and possibly change its plan at any time.

11. The team shall be given a specific amount of resources initially which can be dis-

tributed among agents. Agents spend their resources in exchange for performing

actions on the environment.
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4.2 The System Structure

This section describes the high-level structural design of the simulator that provides

the basis for its detailed design and implementation.
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Figure 4.5: The high-level structure of the simulator and its external relations

At the top-level the simulator is decomposed into three main components: the

simulation engine, the MAS model(s), and the front end (Figure 4.5). The simulation

engine controls the execution of the MAS model(s) and is responsible for coordinating

the course of simulation. A MAS model represents a model of a multiagent system

that would be used for simulation studies. The front end allows the user to control

the simulation process and the presentation of the results. It is also responsible for
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allowing the user to access all of the system functions specified by the use cases. Two

other components of the simulator are responsible for managing system parameters

and systems logs. These components are used by other components of the system.

The simulator provides the interoperability with other systems in two directions.

First, the simulator can be invoked by external systems. For example, another pro-

gram can control the simulator to automate creation and execution of a series of

experiments. In another case, the simulator can be embedded within a system. Sec-

ond, the simulator can use external reasoning engines to allow agents to use more

sophisticated agent reasoning. The details of such interoperabilities are discussed

throughout this chapter.

The simulator’s architecture is designed to provide loosely coupled components.

The benefit of this design is that it allows independent development of different com-

ponents and simplifies its maintenance. In particular, different MAS and microworld

models can be implemented within the simulator; as long as their designs comply

with some general assumptions, there is no need to modify the other component of

the simulator (e.g. the simulation engine). In the rest of this section, we describe the

internal structure of the top-level components and outline the interfacing assumptions

on which their designs are based.

4.2.1 The Simulation Engine

The simulation engine is the central component of the simulator. It is designed to

control the execution of the model and to coordinate the operations of different com-

ponents of the simulator. Its design is based on the assumption that the activity of

each agent team can be viewed as a cooperative game that proceeds in discrete syn-
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Figure 4.6: The simulation engine

chronous rounds, is guaranteed to end after a finite number of rounds, and at the end

produces a final team score that indicates the level of the team’s success in pursuing

its task. The team’s task involves a number of variable parameters whose values can

be randomly generated or specifically set by the experimenter. An instance of the

game, with a particular selection of task parameter values, is called a match.

The simulation engine executes simulation experiments. An experiment may in-

volve a number of agent teams that play their matches concurrently. An experiment

run consists of the concurrent execution of a fixed number of matches, with varying

task parameters, by each agent team and the averaging of each team’s scores. An

experiment consists of a number of runs. That number must be sufficiently large so

as to guarantee the desired level of statistical significance of the averaged team scores.

The experiment handler is responsible for managing the execution of an exper-
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iment. This includes dealing with parameters, activating runs, and calculating the

final team score. This module is activated by the front-end of the simulator and at

the end produces the average team score over multiple runs.

The run handler manages the parameters and the execution of each run of an ex-

periment. Once activated by the experiment handler, it generates a new combination

of the environment settings and starts the simulation process. For each run, there

is a score associated with the team which is passed to the experiment handler. The

run handler activates the match handler for a fixed number of times defined by the

experiment setup.

The match handler is responsible for the concurrent execution of the games played

by individual teams. At the beginning, it initializes each team and the environment

for a new game. At the end of the game, it reports the team score of each team for

that game to the run handler. The game is played in discrete steps until it is over.

For every team, each step is controlled by the team’s round handler explained next.

The round handler executes the MAS model for one step in the game. In each step,

this handler activates different handlers to cause agents to perceive, send, receive, and

act. This module ensures proper synchronization between these activities.

4.2.2 Service Components

Parameter Management

The simulator uses a central parameter repository to store and manage all the ex-

periment configurations and parameters of the simulation. Each component of the
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simulator can use this repository to define, set, and read parameters. For each exper-

iment, the user can set these parameters through this component. This includes all

the parameters of the simulation engine, the environment, agents, interaction models,

etc. Different entities can access their required parameters through this interface.

For easier identification, disambiguation, and safety, parameters are defined using

a namespace convention. The entity that the parameter belongs to can be specified

as prefix in the name of the parameter. For example, the cost of a unicast message

that is used by the communication module can be prefixed by comm and be defined

as “comm.unicastcost”.

One of the main advantages of this component is to allow better interactive ex-

perimentation. Changes to any parameter shall be done through this component and

whenever, at runtime, any component needs to access the value of a parameter it is

done through this component. The front end can perform changes to the model at

runtime without the need to restart the simulation.

Logger

The logger component collects and manages all the logs that other components of

the simulator generate. Such logs can show the progress of simulation, or they can

represent the internal state of an agent in its decision making process. Logs can be

helpful for debugging agent interaction models and further analysis of the simulation.

They can be set to be recorded in a file or be redirected to the GUI for user access.

Also, logs can be classified into different levels, which can be individually set by the

user to be recorded or displayed.
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4.2.3 The Front End

The front end is responsible for providing the experimenter’s access to the simulator.

On the one hand, the user may directly interact with the simulator to design and

perform experiments and access the results. On the other hand, external programs

may use the simulator to perform experiments and process the simulation results.
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Figure 4.7: The Front-end component

The internal structure of the front end is presented in Figure 4.7. It consists of a

configuration module, a graphical user interface (GUI), and a command line interface

(CLI). The configuration module enables the experimenter to create the experiment

setup required for simulation. The graphical user interface provides a graphical and

interactive interface of the functionalities of the simulator to its users. The CLI allows

the simulator to be invoked from the command line.

The configuration module sets the parameter values for the simulation. This in-
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cludes simulator parameters, interaction model parameters, and the microworld pa-

rameters. Other components of the front end use this component to set up experi-

ments.

The GUI provides an interface for interactive user access to the simulator. The user

can create and manipulate experiment setups interactively and use the visualizations

provided by the GUI to get feedback from the simulation model.

The CLI provides a non-interactive access to the simulator. Using CLI, the simu-

lator can be invoked from command line and the experiment setup and the simulation

results can be set to be read from or saved to files. The GUI is suitable for interactive

experimentation by researchers while the command line front end is suitable for batch

mode operations in text-based environments or where interactive experimentation is

not required.

Simulator’s Interoperability with External Systems

The simulator is designed to allow interactions with external systems. The interaction

can be done in situations where the simulator is a client of an external system, the

simulator is a server for an external system, or the simulator interacts bilaterally with

an external system. This can be used to automate experiments and further analyze

the results by other systems and increase the overall functionality of both systems.

The general structure of invoking the simulator from external systems, and vice versa,

is represented in Figure 4.8 and is described as follows.

In order to work with each external system, based on its structure and require-

ments, an adaptor can be developed to provide the interface between the simulator
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and that system. The adaptor is responsible for the requirements of both systems and

translates their interactions and data. Such an adaptor can interact with the simula-

tor through its front end. Experiment setup can be stored in a file by the adaptor for

simulator’s use. Also, the simulation results can be stored in a file so that they can

be processed by the adaptor and translated to the external system’s input format.

4.2.4 The MAS Models

The MAS model component represents a multiagent system. This model is used for

simulation and includes representations of the agents, the team context, the commu-

nication module, and the microworld (Figure 4.9). In addition, the simulator supports

simulating multiple MAS models concurrently. First, the structure of a single MAS
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model and its components, including agent, team context, the communication mod-

ule, and the microworld, that represents a single team is described. Later, concurrent

architecture of the simulation of multiple MAS model based on the presented single

MAS model is explained.

Agent

The simulator employs a simple agent architecture which is built to support the

execution of agent interaction models (Figure 4.10). The agent is activated by the

simulation engine and is connected to the microworld and the communication module

within the MAS model. The agent architecture consists of a belief base, a belief
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updater, a reasoning component, an interaction module, and an actuator component.

The belief base maintains all the beliefs of the agent. Agent’s beliefs can be divided

in two groups: local beliefs that are generated based on agent’s percepts, and context

beliefs that result from the agent’s interactions with the rest of the team. The belief

updater component receives the percepts from the microworld and updates the belief

base and forms local beliefs. The interaction module also updates the belief base and
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forms context beliefs based on the incoming messages.

The reasoning component allows the agent to deliberate about its current situation

and make decisions. The agent uses its reasoning abilities for a number of different

purposes. First, once a subtask is assigned to an agent, the agent can use its reasoning

component to create a plan in order to achieve the subtask. Second, in each round

of the game, the agent can reason whether to initiate an interaction model. Also, the

agent can decide whether to engage in interactions initiated by other agents. Third,

during executing interaction models, the agent can use its reasoning abilities to decide

about its course of action in the protocol decision points. Finally, if the agent can

choose dynamically which interaction model to use, the reasoning component will

perform the deliberation.

The interaction module is a key component of our agent architecture. It contains

a specification of an AIP, where the AIP is defined as a finite state machine (FSM); an

FSM executor, which can execute the AIP’s FSM; and a message handler, which allows

the agent to create, send, and receive messages using the communication module of

the MAS model.

The actuator component performs the chosen action, which is specified as a result

of agent’s reasoning and interactions, using the interface provided by the microworld

(explained later in this section).

The reasoning component of the agent architecture supports reasoning that can

be specified using regular imperative programming languages. However, it does not

provide built-in support for agent-oriented programming languages and reasoning.

The design cases considered in this thesis that use the framework need simple rea-

soning that is implemented using an imperative programming language. However,
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some research may require the use of an agent-oriented language to perform more

realistic reasoning. The agent architecture supports the use of external agent reason-

ing engines in order to enable agents to execute complex reasoning implemented in

an agent-oriented programming language. This feature is built as an option in the

simulator so that one can enable it when it is needed for a particular research problem.
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Figure 4.11: Using an adaptor to connect to external reasoning engines

The simulator’s agent architecture can connect to an external reasoning engine

(found in MAS platforms) using an adaptor (Figure 4.11). The purpose of using an

adaptor is to translate the interactions between simulator’s agent architecture and the

reasoning engine. As long as such adaptor complies with the interface the simulator’s

agent needs, one does not need to modify the simulator’s architecture in order to

develop a new adaptor for a reasoning engine. This allows using different reasoning

engines without being restricted to a particular one and at the same time providing

the same interface to the agent architecture of the simulator. As a result, one can

implement a specific adaptor for a reasoning engine he wishes to use without modifying

the simulator.
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Team Context

The team context module represents an agent team in a MAS. Agents in the same

team are situated in the same environment and are able to interact with each other.

The team context module conceptually holds the agents together by maintaining

team-related information such as team’s task structure, resources, and performance

metrics.

The Communication Module

The communication module provides the facilities that are needed for agent com-

munication. The current version of the simulator provides an implementation for a

message passing system to support AIPs. In addition, the architectural support for

a shared storage module (that can be used to implement a blackboard system) and

communication through the environment is discussed here.

The message passing module consists of a message structure and a direct commu-

nication network between agents. In order to support AIPs, agents shall be able to

create and recognize different types of messages. In addition, they shall be able to

send messages directly to other agents or broadcast a message to all team members.

In the following, the details of the message structure and the communication network

is described.

A message is defined by the structure represented in Figure 4.12. Each message is

built based on a set of fields in the form of < key, value >. The first three fields are

mandatory as they identify its sender, receiver, and the message type. The sender and

receiver fields contain the identification of agents involved in the message passing. The
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Figure 4.12: The message structure

message type specifies the type of the message among all possible types of messages

that a protocol includes. This can be specified by the AIP designer. The rest of the

fields can be used as they are needed based on the message type constraints. In order

to have the least assumptions on the ontology and language, the contents of the key

and value can be anything that can be encoded in a string.

Agents in the same team can exchange messages through a complete synchronous

network with single-message unidirectional channels (as described in [Lynch, 1996]).

In order to send a message from agent A to agent B, A has to put the message on the

channel that exists between A and B. Afterwards, B can access the message once it

needs it. In a similar manner, an agent can broadcast a message by putting it to all

the channels connecting it to other agents.

A typical blackboard system consists of three main components: a group of knowl-

edge base, the control unit, and the shared storage (blackboard). Applied to a MAS,

each agent acts as a knowledge base, carrying special expertise to solve the given prob-

lem. Agents have to be able to post directly to the shared storage and to retrieve any
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Figure 4.13: The architecture of a blackboard for the simulator

desired information from it. In addition, they may also receive notifications from the

blackboard’s control system. This overall architecture is represented in Figure 4.13.

The current architecture of the simulator supports incorporating the blackboard

design described above. Agents can directly send messages to the blackboard, con-

tributing to the common knowledge in the shared storage in the same manner as

they exchange message to each other. Notifications from the blackboard can be sent

through messages as well. Information retrieval can also be implemented through a

pair of messages being sent and received.

The support for environment mediated communication shall come from both the

environment and the agent model. A proposed design for supporting such commu-

nication by the simulator is represented as follows. Implicit communication can be

done thorough changing the environment. Agents can create and use cues in the en-

vironment in order to implicitly communicate with each other and coordinate their

activities. The environment should support creation of such cues. The simulator de-

sign supports such environment characteristics. In a finite gird-based environment,
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each field (cell) can hold a number of different cues. Each cue would be implemented

by an object and might have different attributes associated with it.

In this model, one agent’s modifications in the environment becomes another

agent’s cue. An agent must be able to (1) perceive the cues on the environment,

and (2) make modification in the environment (create cues) through performing ac-

tions. In the simulator’s design, agents are allowed to perceive their environment,

this includes the properties of individual cells which can include a list of all possi-

ble cues. Also, specific actions can be defined which make such modifications in the

environment by creating cue objects.

The Microworld

The microworld, in this version of the simulator, models a cooperative game, played

in discrete steps. The game is played on a rectangular board of colored cells. It is

inspired by the Colored Trails (CT) game [Gal et al., 2010], designed and implemented

independently. It models a dynamic environment which is designed to be used for

studies of helpful behavior.

The microworld component contains a number of different modules as demon-

strated in Figure 4.14. These modules interact with each other and provide the

required functionality of the microworld. The microworld provides interfaces to the

MAS model and the simulation engine to access and control these modules. The

microworld modules are described as follows:

Board The board is a rectangular grid of colored squares and is where agents are

situated. It allows agents to perform their actions using its act interface.
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Figure 4.14: The structure of microworld

Percept Generator The microworld generates percepts per each agent. During

the perception stage, a set of percepts generated by this module is passed to

each agent. These percepts are generated based on the visibility rules of the

microworld allowing the modeling of scenarios with partially observable envi-

ronment.

GUI The microworld can supply an implementation of a graphical component that

can be displayed in the GUI front end. This component provides a graphi-

cal representation of the microworld including environment, agents, and task

structure.

Metrics The microworld provides metrics for teams regarding their performance and

other qualitative measures. These rules for measuring team performance are

specified separately.
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Dynamism Generator The microworld models a dynamic environment. Therefore,

the state of the environment, in particular the board, is subject to stochastic

changes. These changes are generated based on a model of dynamism supplied

by the user. In addition, the microworld allows the simulation engine to control

the generation of these changes by firing events.

Concurrent Simulation of Multiple Teams

In order to simulate multiple teams concurrently, the simulator needs to conduct the

exact same experiments on different MAS models. Each MAS model might use a

different interaction model or the same interaction model with different parameters.

Constructing the same experiments for each MAS model is necessary in order to ensure

the fairness of the comparisons and validity of the studies. It also helps in getting early

feedback from experiments by allowing the user to access the simulation results from

each simulation step for all MAS models or observing the behavior of different MAS

models on the same phenomena at the same time. The dynamic environment requires

special support from the MAS models in order to replicate the same experiment.

The dynamic characteristic of the environment brings a challenge in replicating

experiments. While the initial conditions of each MAS model’s environment should be

the same, the dynamic patterns of the environment over time should also be exactly

reflected in each MAS model’s copy of environment. There are two types of sources of

the environment dynamics: the ones that are beyond the control of agents (external)

and the ones that are direct or indirect result of agents actions (internal). Based on

this distinction, an architecture is designed to support constructing the same dynamic

patterns in each MAS model’s environment as follows.
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Figure 4.15: The board architecture for parallel MAS models, each representing a
different team. The global environment is perceivable by agents from all MAS models.
Each MAS model has a distinct layer which maintains the MAS specific information.
Agents have access to both layers through an augmented board which is a virtual
layer combining two other layers.

Conceptually, the environment and its features are broken into three layers. A

global environment layer, a local environment layer, and an augmented environment

layer (Figure 4.15). The global environment consists of all the common features of the

environment which can be shared among the MAS models. This includes any external

events that might occur in the environment that are beyond the control of agents and

independent of their actions. No matter how agents behave in the environment, these

events have their own effects. As a result, each MAS will face the same pattern of

events regardless of the interaction model they employ.

Each MAS model is given a local environment which is specific to that MAS. This

layer of environment handles all the features that belong to the MAS model. For

instance, the outcomes of agents’ actions are handled in this layer of the environment.
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However, agents do not have access to the local environments that belong to other

MAS models. By combining the first two layers, a third layer is created that is

called the augmented environment layer. The environment represented by this layer

contains the information from both the global environment and the MAS model’s local

environment, and it is what the agents perceive. While the augmented environment

contains the perceptions propagated from both other layers and is used for agents’

perceptions, the outcomes of agents’ actions are only reflected on their own MAS

model’s local environment. In this way, each MAS model has an identical yet isolated

environment which is subject to the same external change patterns. An example

of applying this architecture to a grid-based environment in which agents perform

implicit communication through environment is illustrated in Figure 4.16.

The concurrent simulation of multiple teams is supported by the simulator’s MAS

model architecture as follows. For each team, there is a separate MAS model providing

team, agents, and communication module representations. In addition, each MAS

model includes a microworld. However, in order to replicate the same experiments,

and the same environments, for each team, the microworld of each MAS model need

to share parts of their state. This belongs to the state of the board in which agents

would be situated. Thus, the board module of the microworld is broken into two

layers: a global board in which the common properties of the board that are going

to be shared among multiple MAS models are represented; and a local copy of the

board for each MAS model, excluding the common properties and only maintaining

team-specific properties (Figure 4.17).
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Figure 4.16: Parallel MAS models using a grid-based environment. The global board
consists of colored cells. An event in such a board could be a change in the cell colors.
Each local board maintains the position of agents and other results of agents’ actions.
In general, any property of the environment that is the result of agent’s actions, or can
be affected by agents’ actions is represented in the local environment and any other
properties that are not affected by agents are represented in the global environment.
The augmented environment provides a unified view of both layers.

4.2.5 Distributed Simulation

The proposed simulator uses a distributed simulation architecture (as shown in Fig-

ure 4.18). In this architecture, the distribution is based on executing different runs of

the same experiment on different nodes of the network. In other words, as for each
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Figure 4.17: Multiple MAS models and the shared microworld
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Figure 4.18: The distributed simulation architecture

experiment there are a large number of runs needed, these runs are distributed to

different instances of the simulator on different nodes of a network. The rationale
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behind this distribution scheme is that these runs are independent from one another.

Therefore, there is no need for synchronization and communication between instances

of the simulator. As a result, this scheme provides a simple and effective distribution

architecture for the simulator.

4.3 The System Behavior

In this section, the behavioral aspects of different components of the system are ex-

plained. However, this only includes the components whose behavioral aspects play

important roles in the simulation process.

4.3.1 The Simulation Engine

The simulation engine design is based on simulating time as discrete values. Accord-

ingly, the simulation model is represented as a discrete system whose state transitions

occur at discrete time steps. The simulation model supported by this framework is a

cooperative game which can be played in discrete steps by different members of the

same agent team. The course of the game, from its beginning to its end, is performed

in a match. The game starts by assigning a task to the team and is played in multiple

rounds. In every round, each agent can perform one action on the environment. These

rounds are repeated until, based on the rules of the game, the game is considered as

finished. The framework also supports modeling a long-term memory for the agents

involved in the game through allowing each run to consist of multiple matches and

allowing the agents to retain some state information from completed matches within

the same run. The behavior of the simulation engine is explained below.
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Figure 4.19: The mechanics of the experiment

At the beginning of an experiment, the Experiment Handler initializes the simu-

lation engine and the model by using the configuration specified in the experiment

setup. Next, based on the specified number of runs for the experiment, it activates

the run handler. At the end of an experiment, it calculates the average score of the

team over all runs (Figure 4.19).

After its invocation by Experiment Handler, the Run Handler first initializes the

microworld and the agents for a new experiment run. Next, it activates the Match

Handler for executing a new game. After the game is over, it checks whether more

matches are required. If yes, it will reactivate the Match Handler. Otherwise, it will

calculate the average team score for all games the team played in the run (Figure 4.20).
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Figure 4.20: The mechanics of the run

The Match Handler starts each match by initializing the parameters of different

parts of the model for a match. Next, it starts executing each round by first firing the

global events of the environment (defined in the microworld component). At the end

of each round, the Match Handler checks for each of the concurrently executing teams

whether, based on the rules of the game, the game is over or not. If the game is not over

yet, it will execute another round of the game, otherwise it will terminate the game

and calculate the team’s score for that game through the microworld (Figure 4.21).

The invocation of the Match Handler terminates when the matches of all teams are

completed.

The game is played in synchronous cycles called rounds. As demonstrated in

Figure 4.22, each cycle starts with agents perceiving their environment. The percepts

are generated by the microworld per each agent and are passed to them individually.
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Figure 4.21: The mechanics of the match

Following the perception, agents enter into a number of communication cycles where

they can interact with each other through message passing. A communication cycle

starts by a send phase and ends with a receive phase. The alternating send -receive

cycles repeat until agents decide, as dictated by the protocol they are employing,

that there is no more communication required. Finally, each round ends with agents

performing actions (if any). Each stage occurs for all the agents within the same team

concurrently. The synchronization of agents’ activities is represented in Figure 4.23.
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Figure 4.22: The mechanics of the round with message passing cycles

4.3.2 The Front End

GUI

The Graphical User Interface (GUI) front end allows an intuitive access to the simula-

tor and provides various unique features that facilitate the study of interaction models

through the simulator. The main window of the GUI is represented in Figure 4.24.

In response to the functional requirements of the system, the fundamental goals of

designing the GUI are summarized in providing the following functionalities:

• Experiments setup
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Figure 4.23: How agents are handled in different stages of each round

• Experiments control

• Online simulation

• Dynamic experimentation

• Visualization

• Statistical analysis

The GUI consists of toolboxes that support different aspects of the simulation,

namely: the control box, the console, the visualization box, and the experiment setup

box. The functionality of each of these components is explained below.

The control toolbox (Figure 4.25) allows the user to control the simulation. It

provides basic start/stop functionalities as well as settings for running the simulation
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Figure 4.24: The main window of the simulator’s GUI

Figure 4.25: The control toolbox

in an infinite loop.
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Figure 4.26: The console toolbox

The console toolbox (Figure 4.26) provides the means to access the raw results,

agents’ logs, and the errors.

Figure 4.27: A chart created in the visualization toolbox

The visualization toolbox provides the support for drawing charts, dynamically,

in user-defined ways1. Examples of different charts are demonstrated in Figure 4.27.

The experiment setup toolbox allows the user to set up experiments and modify

any parameter that is defined within the system. The first tab of the toolbox has

the controls for setting up experiments. In the second tab, the user can adjust any

parameter that is defined in the system (Figure 4.28). This list is interconnected to

the simulation engine’s parameter interface. This makes any changes in the list to be

immediately applied to the (running) system. This unique feature allows dynamically

1The simulator uses the charting library JFreeChart (http://jfreechart.org) for drawing charts on
the GUI.
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Figure 4.28: The parameter editor in the experiment setup toolbox

studying the effect of individual parameters within an experiment that is already

running.

CLI

In the Command-Line Interface (CLI), the input parameters can be read from files

or from the standard input. The results also can be written into a file or just printed

on the standard output. This version of the front end can be easily used to support

functionalities such as distributed simulation or interoperability with other programs.
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4.3.3 The MAS Models

Agent

The agent architecture presented in this framework enables the basic behavior of

agents such as perceiving the environment, reasoning, communicating, and performing

actions. However, the detailed mechanisms of the agent’s behavior are left unspecified

so that they can be defined based on specific requirements of a research problem. In

particular, the agents within the current version of the framework are expected to work

as a team in such a way that they try to maximize their team benefit rather than

their own benefit. They are designed to support interaction protocols for performing

helpful behavior and are capable of modeling different types of reasoning (e.g. rational,

empathic, etc).

Concurrent Simulation of Multiple Teams

The concurrent teams simulation model easily fits into the general simulator architec-

ture (Figure 4.29). At the beginning of every match, the events that affect the global

environment are fired. These events cause the global environment to change in certain

ways. Then, in a (pseudo) parallel setting, the control is passed at the same time to

each MAS model, which starts by firing local events in its local environment followed

by a new round of the game. These local events affect the local environment of each

MAS model individually. Using this method, it is guaranteed that all MAS models

face the same global events in their environment at each round while they are allowed

to have their local events. It is worth mentioning that, in this architecture, from the

agents’ perspective there is only one environment and the layers are invisible to the
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Figure 4.29: Handling multiple MAS models in parallel in each match.

agents.

4.3.4 Distributed Simulation

The simulator provides scalable simulation by using a distributable simulation archi-

tecture. Speed and valid results are the two main requirements of this simulator.

However, precise simulation demands a great amount of computational power which

reduces the speed of the simulator. In order to overcome this barrier and achieve

both of the mentioned objectives, a distributed simulation mechanism is designed and
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provided with the simulator.

The main factor that affects the speed of the simulation is the large number of

runs that are required for more (statistically) significant simulations. As the size of

the sample the simulator is generating is always less than the size of the population

(all possible combinations of settings), there is a natural sampling error associated

with each experiment result. This error can be reduced by increasing the sample size

which, in our case, is the number of runs. For instance, one might need to repeat the

same experiment for more than 25000 times in order to get a reasonably small error.

The impact of this factor can be reduced by breaking down the runs that are being

repeated, and run them in parallel. At the end, by aggregating the results, one can

achieve both the performance and the precision required.

The simulator is designed to support distribution of the simulation load on a Linux

cluster in order to achieve scalability. Based on the nature of these simulations and

factors that affect the performance, the main ideas behind the distributed simulation

design are as follows. As the runs of the same experiment do not depend on each

other, they can happen in parallel. While the simulator runs as a single process to

simulate each instance, each of these instances can be run in parallel with more than

one simulator process. This process can be replicated on a Linux cluster as follows.

A copy of the simulator which is setup to be used in batch mode would be available

on each node of the Linux cluster. The nodes of the cluster are able to communicate

with each other, for exchanging both data and commands, using the Secure Shell

(SSH) protocol. The SSH allows sending remote commands and making basic remote

I/O between different network systems. A main front end is executed on the master

node, where the user can set up, run, and analyze the experiments. The rest of the

system is invisible to the user. The whole process is done in three steps (Figure 4.30)
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Figure 4.30: The three steps of distributed simulation.

1.1. The master node, which only runs a front end, distributes the experiment setup

file to each node within the cluster. In the setup, each node is set to run for a

fraction of the total required number of runs. If N is the number of nodes and

r is the total number of required runs, then each node is set to run r
N

times.

1.2. The master node remotely executes the simulator instances on each node of

the cluster and waits for them to finish. It also creates a Unix pipe for each

connection which can be used to retrieve information from each node.

2. Each node starts executing the simulation.

3.1. Upon generating a new partial result each node writes the results on its standard

output which is redirected to the master node through the pipe.
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3.2. The front end in the master node gathers all the results, aggregates them, and

displays them to the user as if they were all generated in the same machine.

The overall characteristics of this approach is summarized in the following:

• reliability : A failure in any node has a limited effect upon the simulation process

as it just misses a group of runs and thus just reduces the precision.

• flexibility : This distributed architecture can be set up to run on any Linux

cluster with potentially heterogeneous processor hardware.

• cost-effectiveness : As this design requires no synchronization and communica-

tion between nodes, it could be used on any high speed computer network and

does not require the more expensive, low-latency network infrastructures.

• simplicity : The internal architecture of the simulator does not need to be

changed in order to be used in this model.

4.4 Instantiation of the Generic Simulator

Specialized simulators for studying specific classes of AIPs can be instantiated from

the generic simulator architecture and MAS model, presented in this chapter, by

incorporating the models of the desired AIPs as well as a customized MAS model.

In the next chapter, the approaches to the modeling of AIPs and MAS are ex-

plained. In particular, a common microworld model for the studies of helpful behavior

in agent teamwork that can be incorporated in the framework is introduced. In order
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to present the framework in more concrete terms, as well as to evaluate its usefulness,

we describe two separate simulators that have been created using the framework for

our studies of two classes of AIPs for helpful behavior in teamwork. Chapter 5 presents

the MAS and AIP models that are used to build those simulators and Chapter 6 the

experiments that has been conducted using them.

The examples presented in the next two chapters are the test cases for evaluating

the proposed framework and its flexibility and usability for instantiating specialized

simulators for different classes of AIPs and conducting experiments with them.
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Chapter 5

Modeling for Simulation

This chapter first presents the framework’s approach for modeling agent interaction

protocols in Section 5.1. Next, Section 5.2 presents the modeling of a multiagent

system in the framework by elaborating a common world model that is built to support

our research on helpful behavior. Sections 5.3 and 5.4 present the specializations of

this world model that lead to two separate simulators, each designed for studying a

different class of helpful behavior AIPs.

5.1 Modeling of Interaction Protocols

In this section, I explain how one can model agent interaction protocols within the

framework.
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5.1.1 Representing Protocols

Following one of the common techniques in protocol specification (Section 2.4), we

represent agent interaction protocols by interacting finite state machines (FSM). Each

FSM represents the behavior of an agent, and their interactions are represented by

messages passed through a communication network. In our model this network is

synchronous in the sense that the agents alternate between their sending and receiving

S

R

R

S

S

R RS

Figure 5.1: The alternating sending (S) and receiving (R) states of an AIP’s FSM

phases in lockstep. As protocol deliberations occur between those phases, we prefer

to present them through separate states. Accordingly, each state of an FSM is labeled

as either a sending (S) or receiving (R) state. An agent can only send in an S state,

and receive in an R state. A state transition occurs in each synchronous cycle, and it

always leads to a state with an opposite label (Figure 5.1).

Each AIP, in order to be defined in the framework, should be modeled following

the described FSM. In other words, the protocol should be defined as a state machine

with alternating send and receive states guiding the agent through its interactions.

At each send state, agents can send messages to others based on the protocol they

employ. Accordingly, agents receive and process their incoming messages in receive

states. In this model, the state transition is determined by the protocol, based on

agent’s beliefs, incoming and outgoing messages, and current state.
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5.1.2 Multi-Protocol Interaction Models

Some MAS architectures allow dynamic selection of interaction protocol. In such

architectures, an agent can select between alternative protocols dynamically. In these

situations, the agent needs to be able to model multiple protocols and activate one

dynamically. The FSM model described above supports such models by combining

different FSMs. As represented in Figure 5.2, the state machines of individual AIPs

AIP Set (FSM)

AIP A
(FSM)

AIP B
(FSM)

AIP C
(FSM)

AIP D
(FSM)

RS

Figure 5.2: The augmented FSM that combines several AIPs

can be combined based on common practices for combining state machines to create

a new FSM that models a set of AIPs. In this case, the agents initially perform a

negotiation protocol A in order to agree on which of the protocols B, C, and D they

wish to use.
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5.2 A Model of a Multiagent System

This multiagent system (MAS) model is designed as a game along the lines of the

Colored Trails [Gal et al., 2010] game. However, it is designed and developed inde-

pendently to provide a specific microworld for studying helpful behavior in a teamwork

context. The model represents the environment, the agents in a team context, and

the task and subtask specifications. Each entity is described in the following.

5.2.1 Environment

The environment is a rectangular board that consists of colored squares (Figure 5.3)

on which the players of the game (software agents) are situated. The colors of the

squares are chosen from a fixed set of colors C1, ..., Cm,m > 1. The environment is

Figure 5.3: The board of the game

dynamic and evolves in each round of the game. The evolution of the environment is
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represented by the changes in the colors. The color of any given square can change

at any time according to a prescribed stochastic model.

To model different phenomena in the environment, it is often required to model

different types of disturbances. Therefore, the user can design different disturbance

models and plug them into the microworld. Each disturbance model can affect the

environment, and consequently the behavior of agents, in a different way. The dis-

turbance in the environment occurs at the beginning of each round of the game when

the simulation engine activates the global events of the microworld.

5.2.2 Task

At the beginning of each game, a task is assigned to a team. The main objective of

the team is to achieve the given task. The task can be broken into subtasks in such

a way that achieving the task requires achieving all the subtasks. Each subtask is

represented by the location of a square as the starting point and by the location of

another square as the goal. A subtask is then considered to be completed if and only if

all the squares of one of the paths connecting its starting and goal locations have been

marked by one or more agents. In other words, each subtask is done if and only if a

set of certain actions have been performed by agents. However, the progress towards

completion of the task can be measured by a scoring system and, if the completion

cannot be achieved it may still be important to reach a high team score.

Actions are represented by agents making a move from one square to another.

These moves are on a path from the initial location of a subtask to its goal location.

Subtasks are initially assigned to agents at the beginning of the game and can be

dynamically reassigned later based on any user-defined (re)assignment algorithm.
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5.2.3 Resources

At the beginning of each game, the team is given an amount of resource points. The

team should consume some of its resource points in order to perform each action.

5.2.4 Agent Team

Each team consists of agents A1, ..., An, n > 1. The agents are situated in the envi-

ronment in the sense that each agent is located on a certain square of the board. It

is allowed that multiple agents have the same position on the board.

Agents in the same team are allowed to help each other. Currently two forms of

help are modeled: action help and resource help. In action help agents can perform

actions on behalf of their teammates. An instance of such help, termed as help act,

involves an agent Ai that wants to move to a square of color Ck, and a helper agent,

Aj that executes that action on behalf of Ai. The result is that Ai moves with its

budget ri unchanged, and Aj’s budget rj is reduced by cjk + h, where cjk is the cost

of an action on a cell with color Ck for agent Aj, and h ∈ N is a team-wide constant

called the help act overhead. Note that if Aj has a higher capability (i.e., lower cost)

for actions of type Ck than Ai, the help act saves resource points to the team, provided

that the difference in costs is higher than the help act overhead. The help act overhead

quantifies the extra work involved when an agent performs an action for another agent

rather than for itself.

In resource help, agents can exchange resource points. For example, suppose agent

Ai has a higher capability of doing an action of type Ck than agent Aj, but Ai does

not have enough resource points in order to perform Ck. In this situation, Aj can
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send the necessary resource points to Ai so that Ai can finish its designated action.

This will also help the team save more resource points. It is also possible for Ai to

receive resource points from multiple sources.

5.3 Example: The Mutual Assistance Protocol (MAP)

Mutual Assistance Protocol (MAP) [Nalbandyan, 2011] is a protocol for incorporating

helpful behavior in agent teamwork. In MAP, an agent can help another agent who

is requesting help if they can jointly agree that the outcome of the help is in the

interest of their team. The decision about performing help act in thus based on a

rational bilateral distributed agreement between the two agents. The agent use their

individual beliefs and interact through a bidding sequence in order to make their

decisions. A complete description of MAP can be found in [Nalbandyan, 2011] and

[Polajnar et al., 2012].

In this section, the approach for using the proposed framework in modeling a

multiagent system and building a simulator for studying and developing a version of

MAP called Action MAP is presented. First, the microworld that was used for exper-

iments is described. Second, the approach for modeling Action MAP and other help

strategies that have been developed for the comparison studies of MAP is explained.

5.3.1 The Microworld Configuration

The microworld that is used for studying and validating MAP is described in [Polajnar

et al., 2012]. This microworld is carefully tailored to model the essential aspects
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of a teamwork environment needed for experimenting with helpful behavior. This

microworld is the basis for our experimentation. Here, I quote the description directly

from the paper:

The players are software agents A1, . . . , An, n > 1, situated on a rectangu-

lar board divided into colored squares. The game proceeds in synchronous

rounds. Each agent can move to a neighboring square in each round.

Each move represents the execution of an action. The types of actions

α1, . . . , αm are represented by the available colors, and their costs to indi-

vidual agents by the n×m matrix cost of positive integer values.

The task structure and the planning capabilities of agents are modeled in the

microworld component as follows:

At the start of the game, each agent Ai is assigned its initial location

on the board, a unique goal with a specified location and amount gi of

reward points, and a budget ri = dia of resource points, where di is the

shortest distance (i.e., number of squares) from the agent’s initial location

to its goal, and a a positive integer constant. Whenever Ai moves to a

field of color αj, it pays costij from its resource budget; if the budget is

insufficient, the agent is blocked. Each agent chooses its own path to the

goal, which represents the choice of its own local plan. The paths can

intersect; it is legal for multiple agents to be on the same square at the

same time. The game ends when no agent can make a move (because it

has either reached the goal or lacks the resources).
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The game’s objective is to maximize the team’s score. The team score is used as

the metric for evaluating different MAS models for these experiments and is calculated

based on the scoring rules defined as follows:

All agents remain in the game until the end, when their individual scores

are calculated as follows: if Ai has reached the goal, its score is the goal

achievement reward gi plus any remaining resource points (as a savings

bonus); if Ai has failed to reach the goal, its score is dia , where di is the

number of moves Ai has completed, and a is a positive integer constant

representing the reward for each move. The team score is the sum of all

individual scores.

The microworld is designed to model dynamics of the environment that can affect

agents’ actions. The changes in the environment are modeled by a disturbance model:

As a representation of environment dynamics, the color of any square can

be replaced, after each round, by a uniformly random choice from the

color set. The change occurs with a fixed probability D, called the level

of disturbance.

Most MAP experiments conducted so far use the following disturbance model. For

any given square, in each round, the color revision occurs with probability D; the new

color is a uniformly random choice among all available colors (including the current

one). Note that, since the new color can be the same as the old one, the probability

that a given square actually changes color in a given round is D̄ = (1− 1/m)D.

The disturbance model described above is defined as a global environment event.

All the teams within the experiment will face such changes in their environments
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in the exact same manner. At the beginning of each round, the simulation engine

triggers this global environment event and causes the colors of the board to change

based on the level of disturbance introduced above. Level of disturbance is defined as

a parameter and can be set in the experiment setup. It is possible to use other models

of disturbance for other experimentation with MAP.

In simulations of MAP, the helpful act is modeled essentially as described in 5.2.4:

The requester Ai faces a move to a square of color αk , charged at costik ;

if Aj agrees to help, Ai moves at no cost to itself, with the costjk charged

to Aj . Protocol interactions involve explicit computation and communi-

cation costs, and the help act has a fixed overhead cost. While the specific

decision criteria and protocols for help transactions may vary, the general

intent of such transactions is to advance the performance of the team as

represented by the team score.

Finally, the rules of agents’ perception in the environment that are used for gen-

erating percepts for each agent are defined as follows:

Each agent sees the entire board. The agent knows its own cost vector.

It knows the range of all color costs, and thus its own level of expertise

for each action type, relative to what may exist in the team. The agent

has probabilistic beliefs about the cost vectors of other agents. The qual-

ity of its probabilistic beliefs about teammates’ abilities is modeled by a

team-wide constant probability pM , called the mutual awareness. For a

given agent Aj , j 6= i, and color αk, agent Ai believes, with probability

pM , that costjk has the value that it actually has, and with the proba-

bility 1 − pM that all possible color cost values are equally likely. This
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uncertainty reflects the idea that, in many realistic teamwork situations,

the performance of a teammate with a different expert profile on a specific

problem type may be hard to estimate reliably.

5.3.2 Modeling Protocols

Action MAP

Figure 5.4: The Action MAP. Reprinted from: [Polajnar et al., 2012]

As a general procedure in the framework, in order to model a protocol (Action

MAP in this example), after it has been generally conceived initially (e.g. by the

diagram in Figure 5.4), it needs to be represented in terms of interacting finite state

machines (FSM), based on the framework’s AIP modeling scheme described in Sec-

tion 5.1, so that it can be employed by the agents in the framework. The result of

this representation is displayed in Figure 5.5. This FSM follows alternating send and

receive states, which is required by the framework’s FSM executer. Such FSM is then

supported by a full definition of the agent’s behavior in each state and the transition

rules. An example of the definitions for some of the states of the Action MAP’s FSM

is presented in Figure 5.6. The FSM definition is then translated into code that is

executable by the framework.

95



S-INIT

reachedGoal | !needHelp needHelp & canCalc & canBroadcast

R-GET-HELP-REQ R-IGNR-HELP-REQ

needHelp &!canCalc & !canBroadcast

S-RESPOND-TO-REQ

R-BLOCKED

S-SEEK-HELP

R-BIDDING R-BLOCKED

!(bidding & canSend) & !hasResOwnAct

!(bidding & canSend) & hasResOwnAct

bidding & canSend

R-GET-

BIDS

S-BIDDING

R-DO-OWN-ACT

S-DECIDE-OWN-

ACT

S-

BLOCKED
S-RESPOND-BIDS

!hasBids & !hasResOwnAct

hasBids

!hasBids & hasResOwnAct

R-GET-BID-CONF R-DO-OWN-ACT R-BLOCKED
R-ACEPT-HELP-

ACT

canSend

!canSend

S-DECIDE-OWN-ACT S-DECIDE-HELP-ACT

gotConf!gotConf

R-DO-OWN-ACT
R-DO-HELP-

ACT

Initial State Dummy State

Normal State Final State

StatesTransitions

Unconditional Transition:

Conditional Transition:

Logical ‘and’: &

Logical ‘or: |

Cond.

Figure 5.5: The FSM model of Action MAP. Note that some states are shown more
than once for the purpose of better presentation.

Unilateral Protocols

In order to study and evaluate Action MAP, two other protocols with different help

strategies have been modeled: The Unilateral Requester-Initiated Protocol (URIP)

and the Unilateral Helper-Initiated Protocol (UHIP). These protocols represent help

strategies that use unilateral decision making in contrast to Action MAP’s bilateral

approach. The framework easily accommodates the concepts required for incorporat-

ing these help strategies. First, the protocols are modeled in the simulator without

further modifications in its generic AIP model. Second, the framework supports in-

corporating the concept of probabilistic beliefs that is introduced in this MAS model
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State R-GET-BIDS :
Receive q(q ≥ 0) bids (Bid1, . . . , Bidq)

If q == 0 (no bids):
If resources suffice for next action:

Set State to S-DECIDE-OWN-ACTION ;
Return waitingToCommit ;

Else:
Set State to S-BLOCKED ;
Return waitingToCommit ;

Else:
Select the bid with highest Net Team Benefit ∆ij ;
Set State to R-RESPOND-TO-BIDS ;
Return waitingToCommit ;

State S-BIDDING [dummy]:
Set State to R-GET-BID-CONFIRMED ;
Return awaitingResponse;

State R-GET-BID-CONFIRMED:
If receives confirmation message for bidding

Set State to S-DECIDE-HELP-ACTIONS ;
Return waitingToCommit ;

Else:
Set State to S-DECIDE-OWN-ACTIONS ;
Return waitingToCommit ;

Figure 5.6: Example: Part of state definitions for the Action MAP FSM.

which is required for modeling unilateral help strategies.

5.4 Example: The Empathic Help Model

A model of empathy as a mechanism for triggering help in agent teamwork is intro-

duced in [Polajnar et al., 2011] and [Dalvandi, 2012]. A simulator is built using the
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proposed framework in order to investigate whether and how incorporating this model

into agent teamwork can improve the team’s performance.

In this section, the special microworld configuration that is built for this simulator

is explained. The modeling of the protocol is similar as in Section 5.3.

5.4.1 The Microworld Configuration

The simulator built for studies of the empathic help model uses almost the same

microworld configuration as the MAP simulator described in Section 5.3. The main

difference between the microworlds of the two simulators is explained below.

Game #1 Game #2 Game #3

Cik C’ik (C’ik < Cik) C’’ik (C’’ik < C’ik) 

Figure 5.7: Modeling agent’s experience carried over multiple games. The cost of
performing an action on the cell with color Ck by agent Ai is denoted as cik. As the
figure demonstrates, cik decreases as the agent plays more games.

The empathic help model requires agents to acquire experience from the actions

that they perform. To accommodate this concept, a notion of experience is modeled

in this simulator’s microworld in the following way. As described in Section 4.3, each

experiment run consists of a fixed number of matches. In each match, agents play

a new game but some information from previous games is allowed to be maintained
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between games within the same experiment run. In this microworld, as agents perform

actions, they gain more experience. The notion of experience is modeled by a reduction

in the action cost for that agent. As the costs of agents can be carried over from

previous games, agents can gain experience from the previous games in the current

game (Figure 5.7).

The same concept explained here can be used for other types of research where a

long-term memory for agents, as well as a longer-term retention of the changes to the

environment, may be required (e.g. machine learning applications).
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Chapter 6

The Simulation Process

This chapter outlines a selection of simulation experiments that have been conducted

with the simulators developed within the software framework introduced in this thesis.

These experiments constitute a part of the ongoing research into agent interaction

protocols within the MAS research group at UNBC. Their significance in the context

of that research has been described in two defended theses, [Nalbandyan, 2011] and

[Dalvandi, 2012], as well as in two conference papers [Polajnar et al., 2011, 2012]. In

the context of this thesis they are cited as test cases that illustrate the potential of the

software framework to support different MAS models and different requirements of the

experimenters. In particular, Section 6.1 describes the experiments for studying the

MAP interaction protocol using the simulator introduced in Section 5.3; Section 6.2

describes the experiments for studying the Empathic Help Model, which is another

AIP for helpful behavior in teamwork, using the simulator introduced in Section 5.4.

Parts of the experiment descriptions, and the diagrams displaying the simulation

results, are reproduced directly from the cited publications.
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6.1 Example: The Mutual Assistance Protocol (MAP)

The experiments presented in this section have been conducted in order to study dif-

ferent properties of Action MAP and its advantages over other help strategies. First,

the general experiment setup that has been used for these experiments is explained.

Next, two experiments that demonstrate the framework’s potential in modeling and

experimentation with different aspects of Action MAP and the agents’ environment

are presented. These experiments were conducted by Narek Nalbandyan using the

software described in this thesis.

6.1.1 The Experiment Setup

The parameters defined in the experiment setup that has been used for the experi-

ments presented in this section are summarized below:

• The board size is 10 by 10.

• Each square on the board can have one of 6 different colors.

• Each team has 8 agents.

• The reward points for achieving each goal is 2000.

• The reward points for accomplishing each step on the chosen path to the goal

square is 100 reward points.

• The initial allocation of resources for each agent is 200 points per each step in

its chosen path towards its goal square.
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• The overhead cost of performing a help act is 30 points.

• Four agent teams are considered: Action MAP, URIP, UHIP, and No-Help,

• The number of runs for each experiment is set to 10,000.

6.1.2 The Impact of Computation and Communication Costs

Figure 6.1: Team scores vs computation and communication (unicast) costs.
Reprinted from: [Polajnar et al., 2012]

This experiment is designed to study the performance of Action MAP compared to

other help strategies with respect to different costs that exist in realistic settings. In

particular, this experiment looks at the costs associated to performing computations

in assessing help requests and offers and sending and receiving messages in a network.

These costs are referred to as computation and communication (unicast) costs.

The comparative performance of all four teams based on different computation and

communication (unicast) costs is shown in Figure 6.1. The first observation is that
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the three teams that use help protocols (URIP, UHIP, and MAP) perform better than

the one that does not use any help model. However, their scores decrease as the costs

of computation and communication increase. If the costs continue to increase beyond

the area shown in the graph, the team that uses no help will eventually outperform

the teams that use help. Furthermore, as observed in [Polajnar et al., 2012]:

UHIP uses the most computation (leading to a sharper performance drop

at the high-cost end) and the least communication (making it dominant

for high communication and low computation costs). MAP scores are best

overall. The relative scores of MAP vs URIP when communication costs

are dominant depend on the relative cost of broadcast vs. unicast [...].

Our implementation of broadcast as n− 1 unicast messages favors URIP

in the critical area.

This experiment demonstrates the potential of the framework in modeling and

experimentation with some aspects of a multiagent system. First, because of the fact

that performing computations affects the system’s performance, it has been modeled

as a cost (penalty) in the system. Second, the performance of the system has been

measured in different levels of computation costs. Similarly, another penalty in the

system’s performance has been modeled as communication cost and been varied in

the experimentation.

6.1.3 The Impact of Mutual Awareness and Disturbance

This experiment gives more insights about in what situations, based on two different

parameters of the environment, teams that employ Action MAP perform better than
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Figure 6.2: Team scores vs mutual awareness and environmental disturbance.
Reprinted from: [Polajnar et al., 2012]

other teams. These parameters are the level of mutual awareness between agents,

about the information they know from their teammates’ skills; and the level of distur-

bance, representing the frequency of changes in the environment that occur dynam-

ically. The experiment varies the level of mutual awareness and the environmental

disturbance in order to compare the performance of agents using Action MAP with

other unilateral strategies in different conditions of the environment.

The results of this experiment are shown in Figure 6.2. Their analysis in [Polajnar

et al., 2012] is as follows:

URIP and UHIP rely on mutual awareness, while MAP and NO-HELP

do not. URIP and UHIP perform significantly worse than MAP for low

mutual awareness, and improve as the rising knowledge of their team-

mates abilities improves unilateral judgment. At high mutual awareness,

a URIP agent requests help from the right teammates, and owing to lower
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communication costs (partly caused by our costly broadcast) outperforms

the otherwise dominant MAP. Dynamic disturbance in the environment

adversely affects all methods, because the stochastic color changes distort

the effects of the initial planning (i.e., lowest-cost path selection). The

distortion is most significant in the low-disturbance range, as evidenced

by steeper performance drop; as the color composition of the paths gets

closer to random, further stochastic disturbance causes less degradation.

Throughout the range, mutual help partly compensates the effects of dis-

turbance, as the very costly steps in an agent’s path can be performed at

lower cost by helpful teammates. As the figure shows, the performance of

NO-HELP indeed degrades more significantly compared to other methods.

MAP and UHIP degrade the least.

This experiment demonstrates how an experimenter can model and manipulate

different aspects of a MAS environment in order study the behavior of agents in each

configuration. This illustrates the capability of the framework in accommodating

different characteristics of real-world environments in a simplified microworld model

that is suitable for experimentation.

6.2 Example: The Empathic Help Model

This section first examines the framework’s interoperability capabilities by explaining

the technique that has been used for optimizing the empathic help model using its

simulator and MATLAB. Next, I present two experiments about different aspects of

the empathic help model that have been conducted by Behrooz Dalvandi using the

105



software described in this thesis.

6.2.1 Optimizing the Performance of the Empathic Model

The performance of an agent team that employs the empathic help model depends

on four different parameters of the model. Three of these parameters, called the emo-

tional state, past experience, and salience, are empathy factors that participate in

the formation of affective response in the model of empathy for artificial agents intro-

duced in [Dalvandi, 2012]. The emotional state of the subject of empathy influences

the readiness to offer help to the object; passed experience of their mutual interactions

is another influencing factor, as is the salience of the object’s signals the indicating

the need for help. The forth parameter is the threshold which the combined effects

of the three empathy factors need to exceed in order for a help act to take place.

In order to investigate the performance characteristics of empathic help compared

to other help model, one needs to first determine which combination of values of the

four parameters leads to the optimal team performance. The author has chosen to use

Genetic Algorithms (GA) in order to determine the values of these parameters which

together lead to the optimal performance of the agent team that employs the empathic

help model. For performing the optimization, the Global Optimization (GO) toolbox

in MATLAB is used together with the simulator introduced in Section 5.4. In the

following, first a brief overview of the optimization process is explained. Next, the

role of the simulation in the optimization process is discussed. Finally, the approach

to connect the simulator to MATLAB’s GO toolbox is presented.

In order to optimize a problem using GA, one needs to represent its possible solu-

tions as individuals (chromosomes) (i.e. a string representation of some values) and
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define a fitness function that can evaluate each solution. In the simulator’s realm,

the individuals are a tuples of distinguished parameters which affect the performance

of the simulated multiagent system (representing a team). Each tuple of these pa-

rameter values then represents a possible solution. The fitness function’s value is

determined by the performance of the team that uses the specified parameter val-

ues and is measured by a metric defined by the model and implemented within the

simulator.

In this setting, the simulator is used as the fitness function. It takes an individual

generated by MATLAB and performs a simulation based on the values of parameters

defined in the individual. After the simulation process is complete, it returns the

value of the team score as the fitness value. Using this combination, the optimization

algorithm finds the optimal settings for those four parameters based on the team

performance in the simulation experiments.

MATLAB

MATLAB GO/
Simulator Interface

SimulatorIndividual (X)

Experiment 
Setup

Experiment 
Result

Fitness Value  
(f(X))

Figure 6.3: Interfacing the simulator with MATLAB’s Global Optimization (GO)
toolbox. The data flow for a single individual in the population. The fitness value for
the rest of the population is evaluated in the same way.

In order to allow MATLAB to interact with the simulator, a specialized inter-

face is developed. This small program is responsible for translating and managing
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MATLAB’s interactions with the simulator. MATLAB’s GO toolbox can write each

individual data in a file and read the fitness function’s value from a file in each step

of its GA algorithm. In each step, the toolbox generates a population of different

individuals. Each individual represents a tuple of values of the four empathic model

parameters and a fitness value will be associated to it at the end of a simulation

process. The interface’s job for each individual in the population, once it is invoked

by the toolbox, is to read the individual data from the file, generate an experiment

setup, and execute the simulator with the generated experiment setup (as presented

in Figure 6.3). Upon finishing the simulation, the interface gets the experiment result

from the simulator and writes it, as the value of the fitness function, into a file which

is accessible by the toolbox. The toolbox uses this fitness value, checks whether a new

generation is required, and if so, creates a new generation of individuals. This cycle

repeats until the toolbox finds the optimal values based on its configuration. The op-

timal values determined by this method are then used in the simulation experiments

to study the behavior of agents employing the empathic help model.

The results of the genetic algorithm optimization on the four empathic parameters

are presented in Figure 6.4. The optimization process uses an initial population of

30 individuals and stops after it faces 50 stall generations. It uses the rank fitness

scaling function and the stochastic uniform selection function. Note that because the

optimization algorithm is defined so as to minimize the value of the fitness function,

we use the negative value of the team score in the optimization process.
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Figure 6.4: The genetic algorithm optimization of four empathic parameters produced
by MATLAB. Reprinted from: [Dalvandi, 2012]

6.2.2 The Experiment Setup

The experiments with the empathic help model follow the same experiment setup

designed for the Action MAP experiments in order to provide a unified basis for

comparison. Also, the values determined by the optimization process are incorporated

in the model for the following experiments.
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6.2.3 The Validation of Empathy as a Help Trigger

Figure 6.5: The performance of empathic team versus random-help. Reprinted from:
[Dalvandi, 2012]

In order to investigate whether or not empathy can be an effective trigger of help

in an agent team, a series of experiments are performed to compare the performance

of empathic agents with the performance of a team in which agents provide help

randomly. In the experiments, the agents from both teams use the same criteria in

requesting help. For offering help (answering to the help requests), the agents in

the seconds team randomly agree to help based on a fixed probability value, called

the random help rate. These experiments vary the random help rate in different

environmental disturbance levels (as described in Section 6.1).

Figure 6.5 shows the comparative team scores of the empathic team and the ran-

dom help team for different values of random help rate and disturbance in the envi-
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ronment. In low to moderate levels of disturbance the empathic team outperforms

the random-help team for all levels of the help probability. This is indeed the area of

highest interest for practical applications. A disturbance level of 50% implies that half

of the world changes randomly at each step, and the fact that beyond that point most

help strategies become ineffective is intuitively expected. This experiment series thus

shows that empathy is a valid trigger for help most practically relevant situations.

For higher levels of disturbance empathy-based help is no longer effective.

This experiment demonstrates how one can model and manipulate a parameter of

an interaction model (random help model in this example) and study the behavior of

agents in different configurations with respect to the parameter’s value.

6.2.4 A Comparison of Empathic and Rational Help

In order to investigate the comparative performance of teams using empathic and ra-

tional help models, a suitable approach would be to realistically model the deliberation

of rational agents about help acts in situations where the computational complexity of

such deliberations can vary widely. This is because of the expectation that empathic

approaches, which require less computation, might outperform rational ones as ratio-

nal deliberations become increasingly complex. Such experiments can be conducted

in future using the framework proposed in this thesis by connecting it to an external

reasoning engine, measuring the real computational complexity of deliberations about

help, and using it for performance comparisons with empathic help mechanisms.

The current experiment series relies on a simplification which does not allow for

realistic comparisons of the actual decision costs in the empathic versus rational help

models. However, it allows one to identify the general trends as the cost of rational
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Figure 6.6: The performance of empathic team versus Action MAP (as a rational
strategy) Reprinted from: [Dalvandi, 2012]

decision varies in the presence of environmental disturbance. For this purpose the

cost of rational decision is modeled by an independent parameter called the rational

decision cost which affects the team score of agents using Action MAP.

Figure 6.6 shows that the empathic agents exhibit superior performance when

rational decisions become complex. The graph shows that this phenomenon is more

pronounced at higher disturbance levels. This is because at higher disturbance levels

the number of help requests increases and consequently the rational agents need to

perform more calculations. The empathic agents have lower decision costs and can

deal with such situations more efficiently.
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Chapter 7

Analysis and Evaluation

The main objective of this research has been to provide a software framework for

building simulators that facilitate the study of agent interaction models in early stages

of their development. The framework’s purpose has been to help the designer of an

agent interaction model by reducing the design decision space through providing an

environment for simulation experiments that supports early feedback on comparative

performance of alternative solutions. To achieve that, a number of objectives and

design principles have been identified in Section 3.3. In this chapter, I analyze the

proposed framework with respect to its objectives and principles and evaluate to what

extent they are addressed in this thesis.

The graphical user interface (GUI) mode of the front end (presented in Section 4.3)

supports interactive control and manipulation of the simulation model. The experi-

ment setup toolbox of the GUI allows the user to modify the simulation parameters

at any time. The modifications are handled by the parameter manager service of the

framework which guarantees that they apply to all the components of the simulator
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and the simulation model. The feedback from the modifications is provided interac-

tively by the visualization and console toolboxes of the GUI. In addition, the user

can run an experiment step-by-step in order to study the behavior of agents in more

detail. These features together provide interactive experiment control to the users of

the simulators built using the framework.

The visualization toolbox of the GUI provides on-line visualization of the simu-

lation results as well as the state of the world. It responds to any changes in the

simulation model and results as they occur. Working along with the interactive ex-

periment control feature, the interactive and dynamic visualization helps the designer

of an interaction model to reduce the decision space by getting early feedback from

simulation experiments.

The framework’s design allows the user to preview the simulation results as their

precision increases gradually. The front end of the framework that controls the experi-

ment setup and the execution of the experiment can execute a series of experiments in

multiple steps, in such a way that in each step all the experiments are executed with

a low number of runs — which can be done in a reasonable time — and the results are

displayed to the user. In further steps, the results are updated as more experiment

runs are being executed. This feature supports the early feedback of the framework

by allowing the user to preview the trend of any series of experiments before they get

to the desired precision level.

The architecture support for concurrent simulation of multiple teams, as described

in Sections 4.2 and 4.3, provides identical environments and experimental scenarios to

each team while they are being executed concurrently. In order to achieve that, the

architecture uses different layers of environment which allows the separation of global

events from local events. The architecture keeps this separation transparent to mul-
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tiagent system (MAS) models and their agents, allowing them to interact only with

their own environment without knowing about the layers and other teams. Combined

with interactive experimentation and visualization, the performance and behavior of

all the teams are presented to the user at the same time as a part of the early feed-

back mechanisms of the framework. This feature has been successfully tested in all

the experiments conducted using the simulators built with the framework, such as the

ones presented in Chapters 5 and 6. It addresses the objective of reducing the design

decision space by providing early feedback on the comparative performance of alter-

native candidate solutions in identical circumstances. The comparative performance

can be observed during the course of the experiment and the parameters that affect

it can be modified interactively for all candidates at the same time.

The generic MAS model presented in this thesis is based on a generic microworld

model. It only captures the essential elements of expert teamwork (described in Sec-

tions 2.3 and 3.2) by representing agents, tasks and subtasks, expertise, plans, and

helpful acts in simple forms. While it captures the substance of the problem that the

experimenter intends to study, the model remains simple. The environment is repre-

sented by a board of colored squares where each color represents a different expertise

that is required to perform a specific action. Agents are located on this board and

each have a set of individual capabilities. Each agent can individually plan how to

move from its initial location to its goal location and thus complete its subtask. In

addition, this simple model does not require the agents to employ complex ontolo-

gies to deal with the domain knowledge. The agent architecture of this MAS model

focuses on the interaction of agents and does not impose any requirements for using

complex agent reasoning (although it is possible) in dealing with the environment.

These features of the MAS model allow the designers to focus on dealing with agent

interaction models rather than the domain knowledge and agent reasoning. This is
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valuable in the early stages of the design process; later on, the analysis may require

further confirmation or refinement in more elaborate contexts.

The framework’s high-level structure (presented in Section 4.2) is designed to pro-

vide a low coupling between its MAS models component and the rest of the framework.

The MAS models are designed as a separate component of the framework which can

be plugged into the framework and interact with other framework’s components. The

MAS models’ design can be flexibly changed as long as it uses the same few inter-

actions with other components of the framework. This feature has been tested in

our research projects that have been performed using the framework. It contributes

substantially to the extendibility of the application domain of the framework beyond

its initial scope.

The framework’s interoperability, as presented in Section 4.2, is designed in two

directions. First, it allows external systems to manipulate experiment setups and

process simulation results through an adaptor program. In this approach, either the

simulator or the external system can invoke the other; thus, it allows both client and

server configurations for the simulator in interacting with external systems. The in-

teroperability of the simulator has been validated during our research on empathic

help model (Section 6.2). The decoupling of the framework from other pre- and post-

processing applications, along with its interoperability features, allows the framework

design to remain simple and focused on the key tasks, while delegating other po-

tentially complex tasks, such as optimization, advanced visualization, or statistical

analysis, to existing specialized software packages. This flexible architecture thus

extends the framework’s functionality.

Second, the framework allows its agents to employ more complex reasoning capa-

bilities that can be provided by external reasoning engines. The agent architecture of
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the framework can activate an external reasoning engine in the deliberation process

of an agent to execute an agent program written in an agent programming language.

This will delegate the reasoning to the external engine. This type of interoperabil-

ity can be provided by developing an adaptor program to interact with a specific

reasoning engine. This feature supports the transitions in agent interaction model

development, from the early stages that favor simplicity and abstraction, to the more

mature stages that benefit from more elaborate and realistic MAS contexts.

The architecture of the simulators developed within the framework is distributable

in the sense that each simulator can either run on a single processor or be replicated to

share the simulation load among a number processor nodes. The performance impact

of the distributable architecture has been examined in the following experiment series.

A simulator built using the framework was executed on a cluster of identical machines

running Ubuntu Linux 10.04. Each machine had an Intel(R) Core(TM)2 Quad CPU

Q6600 running at 2.40GHz and the nodes were connected through a 100Mb/s Ethernet

network.

The simulator was set to conduct 10 experiments for 10 different levels of environ-

mental disturbance. The experiments included 3 agent teams, each with 8 agents and

the size of the board was set to 10x10. In order to get statistically significant results,

each experiment was repeated 24000 times.

The experiment involved the execution of the same simulation task on a varying

number of nodes in the cluster. The level of distribution was changed in 8 steps,

from a single node run to a cluster with 8 nodes, each time adding a new node. The

duration of the simulation was measured using the Linux/Unix time1 utility.

1http://pubs.opengroup.org/onlinepubs/9699919799/utilities/time.html
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Figure 7.1: The duration of the distributed simulation for 24000 runs, based on the
size of the cluster

The experimental results show that the framework’s simulator architecture is fully

scalable; as the number of nodes on the cluster increases, the speed of the simulation

increases almost linearly. In this example, as presented in Figure 7.1, for a single

node run, the time it took for the simulator to finish 24000 number of runs was 100.1

minutes whereas the time for the same simulation on a cluster with 4 nodes was 25.29

minutes which is almost 1/4th of the time it took with 1 node. The speed gain of the

simulator over different numbers of nodes is presented in Figure 7.2. In all the cases,

the difference between the speed gain and its ideal linear expectation is less than 5%.

The experimental results agree with the theoretical expectations according to the

nature of these simulations. The almost linear speed up can be explained by the fact

that the distributed simulation runs are different instances of the same experiment

but independent from each other. The total number of runs can be broken into pieces
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Figure 7.2: The speed-up of the distributed simulator for an experiment with 24,000
runs. The plot demonstrates the relative speed of distributed computation compared
to the same computation performed on a single node.

that can be executed in parallel which results in better system performance. The

scalability of the results comes from the fact that there is almost no overhead for

communication/synchronization between the instances of the simulator distributed

over multiple nodes. The only overhead in this approach is for the task distribution

which is negligible. As a result, addition of a new node that can process a specific

portion of the load will reduce the overall duration of the simulation proportionate to

its given portion and linearly increase the simulation speed.

The analysis of the performance impact of the distributed simulation above shows

that the method is indeed effective in increasing the speed of simulation and providing

the results to the user faster.

The framework has shown a promising usability in the two research projects on
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agent interaction protocols (AIPs) demonstrated in Chapters 5 and 6. The frame-

work’s capability for instantiating specialized simulators has been verified in those

research projects. Various features of the framework have enabled the modeling and

studying of different aspects of those AIPs and the flexibility of the framework’s ar-

chitecture for implementing new features has been examined during those studies.

In summary, the above analysis suggests that the proposed framework is a valuable

tool for studying agent interaction models and is effective and suitable for a variety

of research projects in agent interactions.
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Chapter 8

Conclusions and Future Work

This thesis describes a new software framework for studying agent interaction models

used in agent teamwork by means of simulation experiments. The framework facili-

tates the building of custom simulators for various multiagent system (MAS) models,

which are then used in design-oriented simulation studies of agent interaction models

in their early development stages. The main purpose of such a custom-made simula-

tor is to reduce the design decision space by providing early feedback on comparative

performance of alternative solutions in the course of simulation experiments, within

a specific research domain.

The results presented in this thesis have helped overcome the methodological chal-

lenges that have been identified in the course of our investigation of concrete agent

interaction protocols for helpful behavior in agent teamwork. Specifically, these chal-

lenges include: the problem of customizing the simulation tools to meet the require-

ments and emphasis of a particular type of MAS research; the problem of reducing

the complexity of simulation models by finding simple and yet representative generic
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abstractions for a particular domain; and the problem of making the tools sufficiently

general, flexible, and extendible that variation in the MAS model structures does not

require substantial changes in the existing tool set.

In order to address these challenges, the framework provides a generic simulator

that can be instantiated with concrete MAS models. Each such MAS model is abstract

and simple, based on a microworld, with a well-defined research scope and focus. It

requires a very modest implementation effort and does not need elaborate support

from the simulation environment. It is relatively easy to incorporate into the generic

simulation environment provided by the framework in order to produce a custom

simulator that effectively supports a specific direction of research.

The generic simulator architecture of the framework provides a novel combination

of features that facilitate experimenting with agent interaction models. In particular,

its generic simulation environment provides interactive experimentation and visual-

ization, concurrent simulation of multiple teams, low coupling between its MAS model

and the simulation environment, distributable architecture, and interoperability with

agent reasoning engines and other external systems. The MAS models also share a

generic architecture designed for the study of agent teamwork interactions. Its inter-

action module implements agent interaction protocols specified as interacting finite

state machines. The microworld is inspired by the Colored Trails game but designed

specifically for studies of helpful behavior in teams of artificial agents. Based on mes-

sage passing in the current implementation, the communication infrastructure is open

to extensions.

Central to the generic simulator architecture is the idea that the designer of a new

agent interaction model, facing a variety of decisions with many possible outcomes,

needs to be able to choose between alternative solutions by comparing their impacts
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on team performance efficiently and directly, so that the design decision space can

be substantially reduced early in the development cycle. In support of this idea, the

generic simulator allows concurrent operation of multiple agent teams employing the

alternative solutions, with immediate visualization of the simulation in progress, and

lets the experimenter interactively control the simulation parameters, including the

possibility of incrementally adjusting the number of runs in order to control the level

of statistical significance of the results.

The framework supports interoperability of the generic simulator with external

systems, as a client, server, or both. For instance, a custom simulator, acting as

a client, has employed MATLAB in order to provide genetic algorithm (GA) opti-

mization of its MAS model parameters, while at the same time, acting as server, it

provided a simulation experiment per each individual (parameter value combination)

in every GA generation, and returned their performance scores to the GA algorithm

as their fitness values. In general, interoperability allows a custom simulator built

within the framework to interactively delegate variety of tasks, such as optimization,

statistical analysis, or advanced visualization, to existing specialized systems.

The computational complexity of the concurrent simulation of multiple MAS mod-

els can be overcome through a distribution of simulation runs of the same experiment

across a potentially large number of nodes in a computing cluster. The achieved

speedup in trials using up to eight nodes, has been found to be almost linear. This is

attributed to the fact that individual runs are mutually independent and do not need

to interact during execution.

The framework has been implemented and used in two research projects at UNBC

to derive the custom simulators for two types of agent interaction protocols for helpful

behavior in agent teamwork: the Mutual Assistance Protocol (MAP) and the Em-
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pathic Help Protocol. MAP lets one team member directly help another based on

their bilateral rational assessment that a help act is in the interest of the team, while

in the empathic help protocol, the decision relies on the affective response based on a

model of empathy for artificial agents. In both cases, the protocol designers have been

able to run their own experiments, and the effectiveness of the simulator in achieving

our formulated objectives has been confirmed.

With respect to possible future research, the following directions can be considered:

• Although the scope of this thesis is on teamwork contexts, the design of the

framework does not exclude the possibility that the developed solutions may

have a wider scope and be applicable, for instance, to selfish agents or to individ-

ual interactions without an immediate group context. Conducting experiments

for applications other than agent teamwork could be an interesting direction for

future work.

• Adding the support for a standard agent communication language as an under-

lying system for message passing would be an interesting part of the future work

of this thesis. In most of the agent-oriented programming languages and MAS

platforms, agents employ an agent communication language in their communi-

cation. For more realistic experimentation, the support for such language would

be valuable for the users of the framework.

• As a by-product of the work on this thesis, a direction for its future work is to

develop an execution layer for agent interaction models that allows abstracting

the interaction models in agent programs. This would separate the interaction

mechanisms from the rest of the mainstream agent code. The execution layer

can be developed independently from multiagent platforms in order to make it
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interoperable with different MAS platforms. This can be an extension of the

parts of the framework which allow the agent architecture, considering its AIP

execution capability, to employ external agent reasoning engines.

• The current version of the framework only implements the message passing com-

munication mechanism used for AIPs. Communication using environment and

communication based on a shared storage are not yet fully implemented. Im-

plementing these mechanisms and providing relevant test-cases for them would

be a part of the future work.
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